欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数系的扩充与复数的引入归纳复习ppt课件.ppt

    • 资源ID:29423410       资源大小:567KB        全文页数:17页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数系的扩充与复数的引入归纳复习ppt课件.ppt

    3.1.2 3.1.2 复数的几何意义复数的几何意义内容:内容:应用应用:1、复数的相关概念2、运用复数的几何意义求参数3、求复数的模1.了解可以用复平面内的点或以原点为起点的向量来表示复数以及它们之间的一一对应关系2掌握实轴、虚轴、模等概念3掌握用向量的模来表示复数的模的方法 本课主要学习复数的几何意义。类比引入新课,接着讲述复数的几何意义的应用、复数模的的几何意义等,加深对复数的几何意义的理解。针对利用复数的几何意义所能解决的问题给出3个例题和变式,强调正确应用复数的几何意义的重要性。 在讲述复数的几何意义的应用时,采用例题与变式结合的方法,通过例1巩固掌握复数的相关概念,通过例2巩固掌握运用复数的几何意义求参数。通过例3掌握求复数模的方法。采用一讲一练针对性讲解的方式,重点理解复数的几何意义的应用。例题与变式练习的安排循序渐进,即突出了本节课的重点又为本节的难点攻克做好了准备.在几何上,在几何上,我们用什么我们用什么来表示实数来表示实数?想一想?想一想?类比类比实数的表示,可实数的表示,可以用什么来表示复数?以用什么来表示复数?实数可以用实数可以用数轴数轴上的点来表示。上的点来表示。实数实数 数轴数轴上的点上的点 (形形)(数数)一一对应一一对应 复数复数的一的一般形般形式?式?Z=a+bi(a, bR)一个复数由什么唯一确定一个复数由什么唯一确定?复数复数z=a+bi有序实数对有序实数对(a,b)直角坐标系中的点直角坐标系中的点Z(a,b)xyobaZ(a,b) 建立了平面直角建立了平面直角坐标系来表示复数的坐标系来表示复数的平面平面x轴轴-实轴实轴y轴轴-虚轴虚轴(数)(数)(形)(形)-复数平面复数平面 (简称简称复平面复平面)一一对应一一对应z=a+biO 1 :复数与点的对应复数与点的对应XY() +i ;() +i;() i;() i;() ;() i;GACFOEDBH 2:点与复数的对应点与复数的对应(每个小正方格的边长为1)XY(A)在复平面内,对应于实数的点都在实在复平面内,对应于实数的点都在实 轴上;轴上;(B)在复平面内,对应于纯虚数的点都在在复平面内,对应于纯虚数的点都在 虚轴上;虚轴上;(C)在复平面内,实轴上的点所对应的复在复平面内,实轴上的点所对应的复 数都是实数;数都是实数;(D)在复平面内,虚轴上的点所对应的复在复平面内,虚轴上的点所对应的复 数都是纯虚数。数都是纯虚数。例例1.辨析:辨析:1下列命题中的假命题是(下列命题中的假命题是( )D例例2 2 已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内所在复平面内所对应的点位于第二象限,求实数对应的点位于第二象限,求实数m m允许的取值范围。允许的取值范围。 表示复数的点所表示复数的点所在象限的问题在象限的问题复数的实部与虚部所满复数的实部与虚部所满足的不等式组的问题足的不等式组的问题转化转化(几何问题几何问题)(代数问题代数问题)一种重要的数学思想:一种重要的数学思想:数形结合思想数形结合思想226020mmmm解:由3221mmm 得或( 3, 2)(1,2)m 变式一:变式一:已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i +m-2)i 在复平面在复平面内所对应的点在直线内所对应的点在直线x-2y+4=0 x-2y+4=0上,求实数上,求实数m m的值。的值。 复数复数z=a+bi直角坐标系中的点直角坐标系中的点Z(a,b)一一对应一一对应平面向量平面向量OZ 一一对应一一对应一一对应一一对应xyobaZ(a,b)z=a+bi小结xOz=a+biy复数的绝对值复数的绝对值 (复数的模复数的模) 的的几何意义几何意义:Z (a,b)22ba 对应平面向量对应平面向量 的模的模| |,即,即复数复数 z=z=a+ +bi i在复平面上对应的点在复平面上对应的点Z(a,b)到原点的到原点的距离。距离。OZ OZ | z | = | |OZ 小结 例例3 求下列复数的模:求下列复数的模: (1)z1=- -5i (2)z2=- -3+4i (3)z3=5- -5i(2)(2)满足满足|z|=5(zC)|z|=5(zC)的的z z值有几个?值有几个?(1)(1)满足满足|z|=5(zR)|z|=5(zR)的的z z值有几个?值有几个?(4)z4=1+mi(mR) (5)z5=4a- -3ai(a0) 这些复数对应的点在复平面上构成怎样这些复数对应的点在复平面上构成怎样的图形?的图形? 小结xyO设设z=x+yi(x,yR)z=x+yi(x,yR)满足满足|z|=5(zC)|z|=5(zC)的复数的复数z z对应的点在对应的点在复平面上将构成怎复平面上将构成怎样的图形?样的图形?55555|22yxz 1 1、当、当m m为何实数时,复数为何实数时,复数 (1 1)实数)实数 (2 2)虚数)虚数 (3 3)纯虚数)纯虚数immmZ) 1(222 3、已知两个复数、已知两个复数x2-1+(y+1)i大于大于4、已知实数、已知实数x与纯虚数与纯虚数y满足满足2x-1+2i=y, 求求x,y。2x+2+(y2-1)i.试求实数试求实数x,y的取值范围的取值范围ni424ni34ni14ni1.1.虚数单位虚数单位i的引入;的引入;2.2.复数有关概念:复数有关概念:),( RbRabiaz dicbia dbca3.复数的几何意义是什么?复数的几何意义是什么? 1“a=0”是是“复数复数a+bi (a , bR)是纯是纯虚数虚数”的(的( )。)。 (A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件 (C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件C 2“a=0”是是“复数复数a+bi (a , bR)所对所对应的点在虚轴上应的点在虚轴上”的(的( )。)。 (A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件 (C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件A 3. 3.若复平面内一个正方形的三个顶点对若复平面内一个正方形的三个顶点对应的复数分别为应的复数分别为z z1 11 12i2i,z z2 22 2i i,z z3 31 12i2i,求这个正方形第四个顶点对,求这个正方形第四个顶点对应的复数应的复数. .x xy yO OZ Z1 1Z Z2 2Z Z3 3Z Z4 4z z4 42 2i i

    注意事项

    本文(数系的扩充与复数的引入归纳复习ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开