欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学概念总结(高考必看之经典)-2.doc

    • 资源ID:29893888       资源大小:985KB        全文页数:56页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学概念总结(高考必看之经典)-2.doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学概念总结(高考必看之经典)-2高中数学复习提纲高中數學概念總結一、 函數1、 若集合A中有n個元素,則集合A的所有不同的子集個數為,所有非空真子集的個數是。二次函數的圖像的對稱軸方程是,頂點座標是。用待定係數法求二次函數的解析式時,解析式的設法有三種形式,即,和 (頂點式)。2、 冪函數 ,當n為正奇數,m為正偶數,m<n時,其大致圖像是3、 函數的大致圖像是由圖像知,函數的值域是,單調遞增區間是,單調遞減區間是。二、 三角函數1、 以角的頂點為座標原點,始邊為x軸正半軸建立直角坐標系,在角的終邊上任取一個異於原點的點,點P到原點的距離記為,則sin=,cos=,tg=,ctg=,sec=,csc=。2、同角三角函數的關係中,平方關係是:,;倒數關係是:,;相除關係是:,。3、誘導公式可用十個字概括為:奇變偶不變,符號看象限。如:,=,。4、 函數的最大值是,最小值是,週期是,頻率是,相位是,初相是;其圖像的對稱軸是直線,凡是該圖像與直線的交點都是該圖像的對稱中心。5、 三角函數的單調區間: 的遞增區間是,遞減區間是;的遞增區間是,遞減區間是,的遞增區間是,的遞減區間是。6、 7、二倍角公式是:sin2=cos2=tg2=。8、三倍角公式是:sin3= cos3=9、半形公式是:sin= cos=tg=。10、升冪公式是: 。11、降冪公式是: 。12、萬能公式:sin= cos= tg=13、sin()sin()=,cos()cos()=。14、=; =; =。15、=。16、sin180=。17、特殊角的三角函數值: 0sin010cos100tg01不存在0不存在ctg不存在10不存在018、正弦定理是(其中R表示三角形的外接圓半徑):19、由余弦定理第一形式,= 由余弦定理第二形式,cosB=20、ABC的面積用S表示,外接圓半徑用R表示,內切圓半徑用r表示,半周長用p表示則:;21、三角學中的射影定理:在ABC 中,22、在ABC 中,23、在ABC 中: 24、積化和差公式:,。25、和差化積公式:,。三、 反三角函數1、的定義域是-1,1,值域是,奇函數,增函數; 的定義域是-1,1,值域是,非奇非偶,減函數; 的定義域是R,值域是,奇函數,增函數; 的定義域是R,值域是,非奇非偶,減函數。2、當; 對任意的,有: 當。3、最簡三角方程的解集:四、 不等式1、若n為正奇數,由可推出嗎? ( 能 )若n為正偶數呢? (均為非負數時才能)2、同向不等式能相減,相除嗎 (不能)能相加嗎? ( 能 )能相乘嗎? (能,但有條件)3、兩個正數的均值不等式是: 三個正數的均值不等式是: n個正數的均值不等式是:4、兩個正數的調和平均數、幾何平均數、算術平均數、均方根之間的關係是6、 雙向不等式是:左邊在時取得等號,右邊在時取得等號。五、 數列1、等差數列的通項公式是,前n項和公式是: =。2、等比數列的通項公式是,前n項和公式是:3、當等比數列的公比q滿足<1時,=S=。一般地,如果無窮數列的前n項和的極限存在,就把這個極限稱為這個數列的各項和(或所有項的和),用S表示,即S=。4、若m、n、p、qN,且,那麼:當數列是等差數列時,有;當數列是等比數列時,有。5、 等差數列中,若Sn=10,S2n=30,則S3n=60;6、等比數列中,若Sn=10,S2n=30,則S3n=70;六、 複數1、 怎樣計算?(先求n被4除所得的餘數,) 2、 是1的兩個虛立方根,並且: 3、 複數集內的三角形不等式是:,其中左邊在複數z1、z2對應的向量共線且反向(同向)時取等號,右邊在複數z1、z2對應的向量共線且同向(反向)時取等號。4、 棣莫佛定理是:5、 若非零複數,則z的n次方根有n個,即:它們在複平面內對應的點在分佈上有什麼特殊關係?都位於圓心在原點,半徑為的圓上,並且把這個圓n等分。6、 若,複數z1、z2對應的點分別是A、B,則AOB(O為座標原點)的面積是。7、 =。8、 複平面內複數z對應的點的幾個基本軌跡: 軌跡為一條射線。 軌跡為一條射線。 軌跡是一個圓。 軌跡是一條直線。 軌跡有三種可能情形:a)當時,軌跡為橢圓;b)當時,軌跡為一條線段;c)當時,軌跡不存在。 軌跡有三種可能情形:a)當時,軌跡為雙曲線;b) 當時,軌跡為兩條射線;c) 當時,軌跡不存在。七、 排列組合、二項式定理1、 加法原理、乘法原理各適用於什麼情形?有什麼特點?加法分類,類類獨立;乘法分步,步步相關。2、排列數公式是:=; 排列數與組合數的關係是: 組合數公式是:=; 組合數性質:= += =3、 二項式定理: 二項展開式的通項公式: 八、 解析幾何1、 沙爾公式:2、 數軸上兩點間距離公式:3、 直角坐標平面內的兩點間距離公式: 4、 若點P分有向線段成定比,則=5、 若點,點P分有向線段成定比,則:=; = = 若,則ABC的重心G的座標是。6、求直線斜率的定義式為k=,兩點式為k=。7、直線方程的幾種形式:點斜式:, 斜截式: 兩點式:, 截距式: 一般式: 經過兩條直線的交點的直線系方程是:8、 直線,則從直線到直線的角滿足:直線與的夾角滿足:直線,則從直線到直線的角滿足:直線與的夾角滿足:9、 點到直線的距離:10、兩條平行直線距離是11、圓的標準方程是:圓的一般方程是:其中,半徑是,圓心座標是思考:方程在和時各表示怎樣的圖形?12、若,則以線段AB為直徑的圓的方程是 經過兩個圓, 的交點的圓系方程是: 經過直線與圓的交點的圓系方程是:13、圓為切點的切線方程是一般地,曲線為切點的切線方程是:。例如,抛物線的以點為切點的切線方程是:,即:。注意:這個結論只能用來做選擇題或者填空題,若是做解答題,只能按照求切線方程的常規過程去做。14、研究圓與直線的位置關係最常用的方法有兩種,即: 判別式法:>0,=0,<0,等價於直線與圓相交、相切、相離; 考查圓心到直線的距離與半徑的大小關係:距離大於半徑、等於半徑、小於半徑,等價於直線與圓相離、相切、相交。15、抛物線標準方程的四種形式是:16、抛物線的焦點座標是:,准線方程是:。 若點是抛物線上一點,則該點到抛物線的焦點的距離(稱為焦半徑)是:,過該抛物線的焦點且垂直於抛物線對稱軸的弦(稱為通徑)的長是:。17、橢圓標準方程的兩種形式是:和。18、橢圓的焦點座標是,准線方程是,離心率是,通徑的長是。其中。19、若點是橢圓上一點,是其左、右焦點,則點P的焦半徑的長是和。20、雙曲線標準方程的兩種形式是:和。21、雙曲線的焦點座標是,准線方程是,離心率是,通徑的長是,漸近線方程是。其中。22、與雙曲線共漸近線的雙曲線系方程是。與雙曲線共焦點的雙曲線系方程是。23、若直線與圓錐曲線交於兩點A(x1,y1),B(x2,y2),則弦長為 ; 若直線與圓錐曲線交於兩點A(x1,y1),B(x2,y2),則弦長為 。 24、圓錐曲線的焦參數p的幾何意義是焦點到准線的距離,對於橢圓和雙曲線都有:。25、平移坐標軸,使新坐標系的原點在原坐標系下的座標是(h,k),若點P在原坐標系下的座標是在新坐標系下的座標是,則=,=。九、 極座標、參數方程1、 經過點的直線參數方程的一般形式是:。2、 若直線經過點,則直線參數方程的標準形式是:。其中點P對應的參數t的幾何意義是:有向線段的數量。若點P1、P2、P是直線上的點,它們在上述參數方程中對應的參數分別是則:;當點P分有向線段時,;當點P是線段P1P2的中點時,。3、圓心在點,半徑為的圓的參數方程是:。3、 若以直角坐標系的原點為極點,x軸正半軸為極軸建立極坐標系,點P的極座標為直角坐標為,則,。4、 經過極點,傾斜角為的直線的極座標方程是:,經過點,且垂直於極軸的直線的極座標方程是:,經過點且平行於極軸的直線的極座標方程是:,經過點且傾斜角為的直線的極座標方程是:。5、 圓心在極點,半徑為r的圓的極座標方程是;圓心在點的圓的極座標方程是;圓心在點的圓的極座標方程是;圓心在點,半徑為的圓的極座標方程是。6、 若點M、N,則。十、 立體幾何1、求二面角的射影公式是,其中各個符號的含義是:是二面角的一個面內圖形F的面積,是圖形F在二面角的另一個面內的射影,是二面角的大小。2、若直線在平面內的射影是直線,直線m是平面內經過的斜足的一條直線,與所成的角為,與m所成的角為, 與m所成的角為,則這三個角之間的關係是。3、體積公式: 柱體:,圓柱體:。 斜棱柱體積:(其中,是直截面面積,是側棱長); 錐體:,圓錐體:。 台體:, 圓臺體: 球體:。4、 側面積:直棱柱側面積:,斜棱柱側面積:;正棱錐側面積:,正棱臺側面積:;圓柱側面積:,圓錐側面積:,圓臺側面積:,球的表面積:。 5、幾個基本公式: 弧長公式:(是圓心角的弧度數,>0); 扇形面積公式:; 圓錐側面展開圖(扇形)的圓心角公式:; 圓臺側面展開圖(扇環)的圓心角公式:。 經過圓錐頂點的最大截面的面積為(圓錐的母線長為,軸截面頂角是):十一、比例的幾個性質1、比例基本性質:2、反比定理:3、更比定理:5、 合比定理;6、 分比定理:7、 合分比定理:8、 分合比定理:9、 等比定理:若,則。十二、複合二次根式的化簡當是一個完全平方數時,對形如的根式使用上述公式化簡比較方便。-

    注意事项

    本文(高中数学概念总结(高考必看之经典)-2.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开