欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    Java技术介绍-毕业论文外文翻译.docx

    • 资源ID:29895486       资源大小:57.85KB        全文页数:15页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Java技术介绍-毕业论文外文翻译.docx

    Java Technical DescriptionJava as a Programming Platform.Java is certainly a good programming language. There is no doubt that it is one of the better languages available to serious programmers. We think it could potentially have been a great programming language, but it is probably too late for that. Once a language is out in the field, the ugly reality of compatibility with existing code sets in." Java was never just a language. There are lots of programming languages out there, and few of them make much of a splash. Java is a whole platform, with a huge library, containing lots of reusable code, and an execution environment that provides services such as security, portability across operating systems, and automatic garbage collection. As a programmer, you will want a language with a pleasant syntax and comprehensible semantics (i.e., not C+). Java fits the bill, as do dozens of other fine languages. Some languages give you portability, garbage collection, and the like, but they don't have much of a library, forcing you to roll your own if you want fancy graphics or networking or database access. Well, Java has everythinga good language, a high-quality execution environment, and a vast library. That combination is what makes Java an irresistible proposition to so many programmers.Features of Java.1.Simple We wanted to build a system that could be programmed easily without a lot of esoteric training and which leveraged today's standard practice. So even though we found that C+ was unsuitable, we designed Java as closely to C+ as possible in order to make the system more comprehensible. Java omits many rarely used, poorly understood, confusing features of C+ that, in our experience, bring more grief than benefit. The syntax for Java is, indeed, a cleaned-up version of the syntax for C+. There is no need for header files, pointer arithmetic (or even a pointer syntax), structures, unions, operator overloading, virtual base classes, and so on. (See the C+ notes interspersed throughout the text for more on the differences between Java and C+.) The designers did not, however, attempt to fix all of the clumsy features of C+. For example, the syntax of the switch statement is unchanged in Java. If you know C+, you will find the transition to the Java syntax easy. If you are used to a visual programming environment (such as Visual Basic), you will not find Java simple. There is much strange syntax (though it does not take long to get the hang of it). More important, you must do a lot more programming in Java. The beauty of Visual Basic is that its visual design environment almost automatically provides a lot of the infrastructure for an application. The equivalent functionality must be programmed manually, usually with a fair bit of code, in Java. There are, however, third-party development environments that provide "drag-and-drop"-style program development. Another aspect of being simple is being small. One of the goals of Java is to enable the construction of software that can run stand-alone in small machines. The size of the basic interpreter and class support is about 40K bytes; adding the basic standard libraries and thread support (essentially a self-contained microkernel) adds an additional 175K. 2. Object OrientedSimply stated, object-oriented design is a technique for programming that focuses on the data (= objects) and on the interfaces to that object. To make an analogy with carpentry, an "object-oriented" carpenter would be mostly concerned with the chair he was building, and secondarily with the tools used to make it; a "non-object-oriented" carpenter would think primarily of his tools. The object-oriented facilities of Java are essentially those of C+.Object orientation has proven its worth in the last 30 years, and it is inconceivable that a modern programming language would not use it. Indeed, the object-oriented features of Java are comparable to those of C+. The major difference between Java and C+ lies in multiple inheritance, which Java has replaced with the simpler concept of interfaces, and in the Java metaclass model. The reflection mechanism and object serialization feature make it much easier to implement persistent objects and GUI builders that can integrate off-the-shelf components.3. Distributed Java has an extensive library of routines for coping with TCP/IP protocols like HTTP and FTP. Java applications can open and access objects across the Net via URLs with the same ease as when accessing a local file system. We have found the networking capabilities of Java to be both strong and easy to use. Anyone who has tried to do Internet programming using another language will revel in how simple Java makes onerous tasks like opening a socket connection. (We cover networking in Volume 2 of this book.) The remote method invocation mechanism enables communication between distributedobjects (also covered in Volume 2).There is now a separate architecture, the Java 2 Enterprise Edition (J2EE), that supports very large scale distributed applications.4. Robust Java is intended for writing programs that must be reliable in a variety of ways. Java puts a lot of emphasis on early checking for possible problems, later dynamic (run-time) checking, and eliminating situations that are error-prone. The single biggest difference between Java and C/C+ is that Java has a pointer model that eliminates the possibility of overwriting memory and corrupting data. This feature is also very useful. The Java compiler detects many problems that, in other languages, would show up only at run time. As for the second point, anyone who has spent hours chasing memory corruption caused by a pointer bug will be very happy with this feature of Java. If you are coming from a language like Visual Basic that doesn't explicitly use pointers, you are probably wondering why this is so important. C programmers are not so lucky. They need pointers to access strings, arrays, objects, and even files. In Visual Basic, you do not use pointers for any of these entities, nor do you need to worry about memory allocation for them. On the other hand, many data structures are difficult to implement in a pointerless language. Java gives you the best of both worlds. You do not need pointers for everyday constructs like strings and arrays. You have the power of pointers if you need it, for example, for linked lists. And you always have complete safety, because you can never access a bad pointer, make memory allocation errors, or have to protect against memory leaking away.5. Secure Java is intended to be used in networked/distributed environments. Toward that end, a lot of emphasis has been placed on security. Java enables the construction of virus-free, tamper-free systems. In the first edition of Core Java we said: "Well, one should 'never say never again,'" and we turned out to be right. Not long after the first version of the Java Development Kit was shipped, a group of security experts at Princeton University found subtle bugs in the security features of Java 1.0. Sun Microsystems has encouraged research into Java security, making publicly available the specification and implementation of the virtual machine and the security libraries. They have fixed all known security bugs quickly. In any case, Java makes it extremely difficult to outwit its security mechanisms. The bugs found so far have been very technical and few in number. From the beginning, Java was designed to make certain kinds of attacks impossible, among them:· Overrunning the runtime stacka common attack of worms and viruses Corrupting memory outside its own process space Reading or writing files without permission. · A number of security features have been added to Java over time. Since version1.1, Java has the notion of digitally signed classesWith a signed class, you can be sure who wrote it. Any time you trust the author of the class, the class can be allowed more privileges on your machine.6. Architecture Neutral The compiler generates an architecture-neutral object file formatthe compiled code is executable on many processors, given the presence of the Java runtime system. The Java compiler does this by generating bytecode instructions which have nothing to do with a particular computerarchitecture. Rather, they are designed to be both easy to interpret on any machine and easily translated into native machine code on the fly.This is not a new idea. More than 20 years ago, both Niklaus Wirth's original implementation of Pascal and the UCSD Pascal system used the same technique. Of course, interpreting bytecodes is necessarily slower than running machine instructions at full speed, so it isn't clear that this is even a good idea. However, virtual machines have the option of translating the most frequently executed bytecode sequences into machine code, a process called just-in-time compilation. This strategy has proven so effective that even Microsoft's .NET platform relies on a virtual machine. The virtual machine has other advantages. It increases security because the virtual machine can check the behavior of instruction sequences. Some programs even produce bytecodes on the fly, dynamically enhancing the capabilities of a running program.7. Portable Unlike C and C+, there are no "implementation-dependent" aspects of the specification. The sizes of the primitive data types are specified, as is the behavior of arithmetic on them. For example, an int in Java is always a 32-bit integer. In C/C+, int can mean a 16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes. The only restriction is that the int type must have at least as many bytes as a short int and cannot have more bytes than a long int. Having a fixed size for number types eliminates a major porting headache. Binary data is stored and transmitted in a fixed format, eliminating confusion about byte ordering. Strings are saved in a standard Unicode format.The libraries that are a part of the system define portable interfaces. For example, there is an abstract Window class and implementations of it for UNIX, Windows, and the Macintosh. As anyone who has ever tried knows, it is an effort of heroic proportions to write a program that looks good on Windows, the Macintosh, and 10 flavors of UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that mapped common user interface elements to a number of platforms. Unfortunately, the result was a library that, with a lot of work, could give barely acceptable results on different systems. (And there were often different bugs on the different platform graphics implementations.) But it was a start. There are many applications in which portability is more important than user interface slickness, and these applications did benefit from early versions of Java. By now, the user interface toolkit has been completely rewritten so that it no longer relies on the host user interface. The result is far more consistent and, we think, more attractive than in earlier versions of Java.8. Interpreted The Java interpreter can execute Java bytecodes directly on any machine to which the interpreter has been ported. Since linking is a more incremental and lightweight process, the development process can be much more rapid and exploratory.Incremental linking has advantages, but its benefit for the development process is clearly overstated. In any case, we have found Java development tools to be quite slow. If you are used to the speed of the classic Microsoft Visual C+ environment, you will likely be disappointed with the performance of Java development environments. (The current version of Visual Studio isn't as zippy as the classic environments, however. No matter what languageyou program in, you should definitely ask your boss for a faster computer to run the latest development environments. )9. High Performance While the performance of interpreted bytecodes is usually more than adequate, there are situations where higher performance is required. The bytecodes can be translated on the fly (at run time) into machine code for the particular CPU the application is running on. If you use an interpreter to execute the bytecodes, "high performance" is not the term that we would use. However, on many platforms, there is also another form of compilation, the just-in-time (JIT) compilers. These work by compiling the bytecodes into native code once, caching the results, and then calling them again if needed. This approach speeds up commonly used code tremendously because one has to do the interpretation only once. Although still slightly slower than a true native code compiler, a just-in-time compiler can give you a 10- or even 20-fold speedup for some programs and will almost always be significantly faster than an interpreter. This technology is being improved continuously and may eventually yield results that cannot be matched by traditional compilation systems. For example, a just-in-time compiler can monitor which code is executed frequently and optimize just that code for speed.10. Multithreaded The enefits of multithreading are better interactive responsiveness and real-time behavior.if you have ever tried to do multithreading in another language, you will be pleasantly surprised at how easy it is in Java. Threads in Java also can take advantage of multiprocessor systems if the base operating system does so. On the downside, thread implementations on the major platforms differ widely, and Java makes no effort to be platform independent in this regard. Only the code for calling multithreading remains the same across machines; Java offloads the implementation of multithreading to the underlying operating system or a thread library. Nonetheless, the ease of multithreading is one of the main reasons why Java is such an appealing language for server-side development.11. Dynamic In a number of ways, Java is a more dynamic language than C or C+. It was designed to adapt to an evolving environment. Libraries can freely add new methods and instance variables without any effect on their clients. In Java, finding out run time type information is straightforward.This is an important feature in those situations in which code needs to be added to a running program. A prime example is code that is downloaded from the Internet to run in a browser. In Java 1.0, finding out runtime type information was anything but straightforward, but current versions of Java give the programmer full insight into both the structure and behavior of its objects. This is extremely useful for systems that need to analyze objects at run time, such as Java GUI builders, smart debuggers, pluggable components, and object databases.Java技术介绍Java是一种程序设计平台Java是一种优秀的程序设计语言。对于一个名副其实的程序设计人员来说,使用Java无疑是一个好的选择。有人认为:Java将有望成为一种最优秀的程序设计语言,但还需要一个相当长的发展时期。一旦一种语言应用于某个领域,与现存代码的相容性问题就摆在了人

    注意事项

    本文(Java技术介绍-毕业论文外文翻译.docx)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开