PEF600X900复摆颚式破碎机动颚结构设计毕业设计.doc
PEF600X900复摆颚式破碎机动颚结构设计摘 要颚式破碎机在工矿企业被广泛的应用,这是因为该机构结构简单、机型齐全并已大型化。颚式破碎机经过100多年的实践和不断改进,其机构已日臻完善,随着社会的发展需求破碎的要求不断提高,对产品和产品的质量也大大的提高了,破碎机的机型已经发展到很多种了。本文主要是对复摆颚式破碎机设计研究。复摆颚式破碎机是因为其动颚在其它机件的带动下作复杂的一般平面运动而得名,其动颚上的轨迹一般为封闭曲线。复摆破碎机由于偏心轴负荷大一般制成中型和小型的,其破碎比可达10。复摆颚式破碎机在工作时偏心轴作逆时针旋转,对所装入的物料有向下退并夹持作用。该机型垂直摆幅下大上小,有利于出料口处动颚将成品推出。由于整块动颚作复杂运动因此对物料块不但起挤压、劈裂、弯折作用,还能起碾搓作用,故可破碎稍微粘湿的物料。采用正支撑复摆颚式破碎机,动颚下部的特性值m很大,使得动颚和定颚的衬板磨损很快,但却具有较高的生产能力。由实际生产说明,正支撑式颚式破碎机的结构形式具有动颚轨迹分布合理、生产能力高、结构更简单等优点,使其得到广泛应用。关键词: 动颚 , V带选择 , 轨迹优化 , 磨损PEF600X900 Pendulum jaw broken jaw structure design of motorABSTRACTPalate crusher in the industrial and mining enterprises were widely used, this is because the body structure is simple, and complete and large-scale models of. Palate crusher after 100 years of practice and continue to improve, their bodies have been improving,with the social development needs of the requirements broken constantly improve the products and the quality of the products have greatly improved, the crusher models have been developed to a variety .This paper is facing compound pendulum palate crusher design study. Compound pendulum palate crusher because of its dynamic palate in other parts of the lead plane for the general sports complex named after. Moved palate its trajectory is generally closed curve. Crushing machine-placed eccentric axle load due to the generally made of medium-sized and small, broken up over 10.Compound pendulum palate crusher at work for the eccentric shaft counterclockwise rotation, the load of materials and a retreat clamping downward effect. The models under a vertical swing on small and is conducive to moving the material I will be refined palate launched. As block palate for complex dynamic movement of materials therefore not only blocks from the extrusion, Split, bending role, but also from the roller rubbing role, it can be slightly broken stick wet materials. Support is facing a complex palate crusher, moving the lower part of the palate of great value m, making dynamic palate and the palate of liner wear very quickly, but it has a high production capacity. From the actual production that are supporting-palate structure of the Breakers palatine form a dynamic trajectory of a reasonable, high-capacity, the advantages of a simpler structure, it is widely used.KEY WORDS: Move jaw,V belt choice,Track optimization,Abrision2目录前言1第1章 复摆颚式破碎机的发展与特点31.1 复摆颚式破碎机的应用31.2复摆颚式破碎机的特点与现状41.2.1 复摆颚式破碎机的特点41.2.2 复摆颚式破碎机的现状6第2章 总体设计过程122.1 基本结构和工作原理122.1.1 基本结构122.1.2 工作原理122.2 主要参数142.2.1 钳角152.2.2 动颚水平行程172.3 主轴转速212.4 生产能力21第3章 机构各部分的设计273.1 机构各部分杆长的确定273.2 V带及带轮的设计283.3 偏心轴主要尺寸的确定313.3.1 偏心轴的材料选择和最小直径估算313.3.2 偏心轴的结构设计313.3.3 偏心轴细部结构333.3.4 偏心轴的校核333.4 复摆颚式破碎机的动颚的工作过程分析及优化设计353.4.1 动颚的工作过程分析353.4.2 动颚运动轨迹优化设计363.5 偏心轴改进403.5.1 改进前状况413.5.2 修复及改进措施423.5.3 改进效果43第4章 复摆式颚式破碎机的齿板分析和选材444.1复摆颚式破碎机齿板磨损的分析444.2 颚板磨损机制464.3对颚板材质的选择47第5章 复摆颚式破碎机的安装与维护495.1复摆颚式破碎机的安装与运转495.1.1 复摆颚式破碎机的安装495.1.2 复摆颚式破碎机的运转515.2 复摆颚式破碎机主要零件的修理515.2.1齿板的修理515.2.2 动颚的修理525.2.3滑动轴承的修理535.2.4 偏心轴的修理53结论57谢 辞58参考文献59外文资料翻译60前言从第一台颚式破碎机问世以来,至今已有140余年的历史。在此过程中,其结构得到不断的完善,而颚式破碎机的结构简单,安全可靠,石料可供破碎机械来进在基本建设工程中,需要大量的,各种不同粒径的砂、石作为生产之用。而工程上应用最广泛的是复摆颚式破碎机,国产的颚式破碎机数量最多的也是复摆颚式破碎机。破碎机是将开采所得的天然的石料按一定尺寸进行破碎加工的机械。颚式破碎机是有美国人E. W. Blake发明的。自第一台破碎机的出现,生产效率快,又满足安全条件,又能适应生产,大大加快了生产。复摆颚式破碎机结构简单、制造容易、工作可靠、使用维修方便等优点,所有在冶金、矿山、建材、化工、煤炭等行业使用非常广泛。80年代以来,我国对复摆颚式破碎机的研究和产品开发取得了较大的发展。在充分吸收国外产品特点的基础上,结合国情研制开发了许多新型、高效的设备。上海建设路桥机械设备有限公司率先对复摆颚式破碎机进行了重大的改进,即通过降低动颚的悬挂高度,改善动颚的运动轨迹,减小破碎腔的啮角,增大破碎比,增大了动颚的水平行程,提高生产能力等,大大改善了机器性能,完成了产品的更新换代。复摆颚式破碎机主要是由两块颚板(活动颚板和固定颚板)组成。活动颚板对固定颚板周期性的往复运动,时而靠近,时而分开,由此使装在两颚板间的石块受到挤压、劈裂和弯曲作用而破碎。复摆颚式破碎机的机器重量较轻,结构简单(一个连杆、一块肘板、一根心轴和一对轴承),生产效率较高(比同规格的简摆颚式破碎机生产效率高20%30%)。复摆颚式破碎机适合破碎中硬度石料。在工程中,多用中、细碎设备,破碎比比较大,其比值可达。随着机械工业的进步,近年来,复摆颚式破碎机正朝着大型化发展。所以,一个合理的传动装置可以使复摆颚式破碎机运行的更加顺利,合理有效。动颚的优化可使磨损大大的降低,冲击、噪声、振动都相应的减少,也减少工作人员的劳动强度,提高生产的质量,降低制造成本和缩短生产周期。不过,复摆颚式破碎机也有它的缺点,具体如下:JB / ZQ 1032一87颚板铸造技术条件规定齿板寿命只有60小时,按10小时工作制,每副齿板只能用6天,不到一星期就需更换一次齿板。不仅给维修带来很大的不便,而且增加了破碎物料的成本。破碎机出口扬尘非常严重,从破碎机出来的块状和粉末状物料直冲矿石输送皮带,部分物料飞溅或滚淌到地面上,地面堆积厚厚一层物料,部分粉状物料飞扬在空中,给生产带来了很大的不便。较多的粉尘而直接影响安全生产和员工的健康,因此要采用相应的防尘设施是破碎机一个重大而不可忽略的问题。现代的设计应以人为本,面对服务对象,面向市场、面对循环经济、面对矿产资源利用的大趋势,面对环保、搞全性能、全生命的设计。所以做好复摆颚式破碎机的设计,让它更好的为生产服务,提高生产效率。第1章 复摆颚式破碎机的发展与特点1.1 复摆颚式破碎机的应用随着我国国民经济的快速发展,矿产资源的综合利用技术与其产业迅猛前进,到1999年我国已建成10 879座国有大中型矿山和227 854个乡镇集体企业,全国矿石采掘总量超过50亿吨,矿业总产值为4 000亿元。物料的破碎是许多行业(如冶金、矿山、建材、化工、陶瓷筑路等)产品生产中不可缺少的工艺过程。由于物料的物理性质和结构差异很大,为适应各种物料的要求,破碎机的品种也是五花八门的。就金属矿选矿而言,破碎是选矿厂的首道工序,为了分离有用矿物,不但分为粗碎、中碎、细碎,而且还要磨矿。因为破碎是选矿厂的耗能大户(约占全厂耗电的50%),为了节能和提高生产效率,所以提出了“多碎少磨”的技术原则。这使破碎机向细碎、粉碎和高效节能方向发展。另外随着工业自动化的发展,破碎机也向自动化方向迈进(如国外产品已实现机电液一体化、连续检测,并自动调节给料速率、排矿口尺寸及破碎力等)。随着开采规模的扩大,破碎机也在向大型化发展,如粗碎旋回破碎机的处理能力已达6000th。至于新原理和新方式的破碎(如电、热破碎)尚在研究试验中,暂时还不能用于生产。对粗碎而言,目前还没有研制出更新的设备以取代传统的颚式破碎机和旋回式破碎机,主要是利用现代技术,予以改进、完善和提高耐磨性,达到节能、高效、长寿的目的。细碎方面新机型更多些。总的来看,值得提出的有:颚式破碎机、圆锥破碎机、冲击式破碎机和辊压机。而应用最广泛的就是颚式破碎机。传统的颚式破碎机由于具有结构简单、工作可靠、制造容易、维修方便、价格低廉、适用性强等优点,所以在工业上得到广泛应用。其缺点是非连续性破碎、效率较低,破碎比较小,给矿不均匀引起颚板磨损不均匀等。针对其缺点,各国都在以下几方面加以改进:优化结构与运动轨迹改进破碎腔型,以增大破碎比,提高破碎效率,减少磨损,降低能耗,现已普遍应用高深破碎腔和较小啮角;改进了动颚悬挂方式和衬板的支承方式,改善了破碎机性能;颚板采用了新的耐磨材料,降低了磨损消耗;提高了自动化水平(可自动调节、过载保护、自动润滑等)。同时也出现了一些新的机型,如双腔双动颚式破碎机,其破碎比可达,排料口调节方便,产量大;复摆颚式破碎机,兼有颚式破碎机与圆锥破碎机的性能其产量较同规格的破碎机高50%。还有筛分颚式破碎机,把筛分和破碎结合为一体,不仅可简化工艺流程,且能及时将已达粒度要求的物料从破碎腔中排出,减轻了破碎机的堵塞和过粉碎,提高了生产能力,降低了能耗。在大型化方面国内外都已生产1500mm×2100mm规格的颚式破碎机。而我们在这个设计中主要是为了满足进料口尺寸:;出料口尺寸:;进料块最大尺寸:;产量:。的要求老满足生产的需要。1.2复摆颚式破碎机的特点与现状1.2.1 复摆颚式破碎机的特点复摆颚式破碎机的机构属于四杆机构中曲柄摇杆机构的应用,曲柄为主动件。颚式破碎机以结构简单、性能可靠、维修方便在物料粉碎行业广泛应用。复摆颚式破碎机的动颚,是直接悬挂在偏心轴上的饿,是曲柄连杆机构,没有单独的连杆。由于动颚是由偏心轴的偏心直接带动,所以活动颚板可同时做垂直和水平的复杂摆动,颚板上各点的摆动轨迹是由顶部的接近圆形连续变化到下部的椭圆形,越到下部的椭圆形越扁,动颚的水平行程则由下往上越来越大的变化着,因此对石块不但能起压碎、劈碎,还能起辗碎作用。由于偏心轴的转向是逆时针方向,动颚上各点的运动方向都有利于促进排料,因此破碎效果好,破碎率较高、产品粒度均匀且多呈立方体。复摆颚式破碎机和简摆颚式破碎机相比较,复摆颚式破碎机的机器重量较轻,结构简单(少了一件连杆、一块肘板、一根心轴和一对轴承),生产效率较高(比同规格的简摆颚式破碎机生产效率高20%30%)等优点。但复摆颚式破碎机的颚板垂直行程大,石料对颚板的磨削作用严重,磨削较快,且能量消耗也大,工作时易产生较多的粉尘。在工程上应用较为广泛的是腐败颚式破碎机。国产的颚式破碎机数量最多的也是复摆颚式破碎机。复摆颚式破碎机主要由机架、颚板、侧护板、主轴、飞轮、肘板和调整机构等组成。机架即机座,实际上是个上下开口的四方斗,主要用作支承偏心轴和承受破碎物料的反作用力,因此要求具有足够强度,一般采用铸钢整体铸造,规格小的可用优质铸铁代替。大型破碎机的机架由分段铸成后再用螺栓装配在一起,铸造工艺较为复杂。自制的小型颚式破碎机可用4050毫米厚的钢板焊成,但其钢度不如铸钢好。颚板包括活动颚板和固定颚板,各与颚床组成活动颚和固定颚。颚板用楔形铁块和螺栓固定在颚床表面,保护颚床不受磨损。固定颚的颚床就是机架,活动颚的颚床悬挂在偏心轴上,由于它直接承受对石料的挤压作用力,所以必需有足够的强度和刚度活动颚床一般用铸铁或铸钢制造。颚板直接和石块接触,除承受挤压和冲击力外,尚与石块强烈摩擦,因此要求用高强度且耐磨的材料制造。常用的是铸锰钢颚板,其铸钢含锰量为1214%左右。若条件受限制时,可用白口铸铁代替,但容易磨损和折断,使用寿命不长。为了有效地破碎石料,颚板表面常铸成波浪形和牙形,其齿峰角度一般为90°110°,齿高和齿距视出料粒度和产量要求而定。齿形高齿距小,则出料粒度小,产量低,动力消耗大。一般齿高和齿距之比为1/21/3之间。由于复摆式的特点造成颚板底部比上部磨损快,所以颚板往往做成上下对称形状,以便磨损后能倒置安装,延长使用寿命。颚式破碎机的优点是生产率高,结构简单可靠,破碎比较大(一般为68),外形尺寸较小,零件检查和更换较容易,操作维护简便,不用较高技术水平的工人就可嫩能够操作,应用范围广,与其他类型破碎机比较,不容易堵塞。因此工程中普遍采用它来破碎各种硬度92500公斤/厘米以下)的石料,常作粗碎和中碎设备。一般用于破碎极限抗压强度不才超过2000公斤/厘米的石料时效果较好。其缺点是不宜破碎片状石料,工作间歇、有空转冲程,需要很大的摆动体,增加非生产能量的消耗,破碎可塑性和潮湿的物料时,容易堵塞出料口。由于工作时产生很大的惯性力,机体摆动大,工作不平稳,冲击,振动及噪音较大。因此须安装在比机器自重大五倍以上的混凝土基础上,并须采取隔振措施。大型破碎机还应安装在埋设于基础上的刚梁上。颚式破碎机的最大装料块度应比装料口宽度小1520%,即给料的最大石块不应超过装料口的0.85倍。当用颚式破碎机破碎坚硬而光滑的大砾石时,砾石容易从装料口反跳出来,故破碎天然砾石的生产率不及破碎来才块石的生产率高。使用颚式破碎机时,必须注意由于机器是在工作条件恶劣情况下运转的,除了必须严守操作规程和维修保养制度外,还必须及时发现并修复被磨损的零部件,这是提高机器作业的重要措施。 1.2.2 复摆颚式破碎机的现状颚式破碎机是由美国人布雷克发明的。自第一台颚式破碎机问世以来,至今已有 140余年的历史。在此过程中,其结构得到不断地完善。由于颚式破碎机结构简单、制造容易、工作可靠、使用维修方便等优点,所以在冶金、矿山、建材、化工、煤炭等行业使用非常广泛。为了改善颚式破碎机性能和提高工作效率,国内外曾研制过各种异型颚式破碎机。早年,德国和前苏联都曾研制过液压驱动的颚式破碎机。其特点是提高动颚摆动次数借以增加产量,同时能实现液压调整排料口、液压过载保护以及能负荷启动。原西德制造过冲击式颚式破碎机,而原苏联也制造了振动颚式破碎机(也叫惯性颚式破碎机)。它们都靠动颚振动冲击破碎物料,借以提高破碎机性能。前者国内曾经试制过,由于某些原因没能继续研制。原东德曾制造过一种简摆双腔颚式破碎机,美国生产过复摆双腔颚式破碎机。国内北京某设计院以及湖南某大学都曾与工厂合作研制了双腔颚式破碎机。其特点是使间歇工作变成连续工作,借以提高破碎机工作效率。安徽某设计院曾发明一种双腔双动颚复摆颚式破碎机。它除了提高工作效率,同时又能降低破碎机负荷,使机重减轻很多。原苏联早年曾制造一种双动颚颚式破碎机。国内辽宁某学院与矿山合作开发了双动颚颚式破碎机。这种破碎机就是将原来两个破碎机去掉前墙对置后而成。为了两动颚同步运转,在偏心轴一端增设一对开式齿轮。由于它的结构太复杂,近年又研制一种单轴倒悬挂的双动颚破碎机。国内上海某学院曾研制过此种颚式破碎机。这两种破碎机的特点,其动颚同步运转,使破碎机强制排料。这样,靠提高转数增加破碎机产量同时由于物料与动颚没有相对运动,减少衬板磨损延长使用寿命。近来又研制了单动颚倒悬挂颚式破碎机。早年,美国、英国、德国相继生产了 Kun-kan 简摆颚式破碎机。该机特点是,动颚悬挂高度很高并且前倾。连杆下行为工作行程、主轴承为半圆滑动颚轴承。山东招远黄金机械厂曾引进了这种破碎机,并在此基础上研制了 34 颚式破碎机。国外制造过一种肘板向上放置的颚式破碎机。国内有几家设计院和制造厂生产了这种破碎机。它的特点是靠增大传动角改善动颚运动特性,提高破碎机性能。在国内该机有叫负支承、上斜式、上推式和上置式破碎机。笔者认为叫大传动角(包括倾斜式)破碎机更合适。 美国鹰破碎机公司制造一种倾斜式颚式破碎机。其传动角大约70度以上。它的最大特点是低矮,最适于井下或移动式破碎机上工作。北京矿冶研究总院与某厂合作生产了几个规格的这种破碎机,其中最大为9001200 颚式破碎机。国内山西某煤矿引进德国 WB8/26 颚式破碎机。该机置于皮带机上方,借助曲柄连杆机构驱动动颚压碎煤块。实践证明使用效果较好。以上各项异型破碎机的研制都取得了一定的效果并对国内破碎机行业的发展起到了一定的推动和促进作用。但是,都没能得到大面积推广使用。国内绝大多数制造厂生产的和现场使用的都还是传统复摆颚式破碎机。就近两年国外机械设备展览会上展出的颚式破碎机来看,也都是传统颚式破碎机,没有异型颚式破碎机出现。国内各厂家所制造的颚式破碎机技术水平相差悬殊,有少数厂家的产品基本接近世界先进水平,而大多数厂家的产品与世界先进水平相比差距较大。综上所述,改善国内颚式破碎机落后的状况,全面提高颚式破碎机技术水平,赶上世界先进水平,创造世界品牌的颚式破碎机是当务之急。保证颚式破碎机最佳性能的根本因素是动颚有最佳的运动特性。这个特性又是借助机构优化设计所得到的。因此,颚式破碎机机构优化设计是保证破碎机有最佳性能的根本方法。上海建设路桥机械设备有限公司(简称上建)开发了颚式破碎机软件,借助其中机构优化设计模块对各种规格的破碎机进行优化设计,得到了最佳的动颚运动特性。实践结果表明,破碎机性能有显著提高。该厂山宝牌颚式破碎机销往欧美各大洲以及东南亚各国,产品基本上达到世界先进水平。目前,计算机在国内各厂家已基本普及,但颚式破碎机机构优化设计尚未得到广泛应用。国内颚式破碎机的机重普遍高于国外同规格的破碎机。减轻机重也是一个重要课题。颚式破碎机机架占整机重量很大比例(铸造机架占 50%、焊接机架占 30%)。国外颚式破碎机都是焊接机架,甚至动颚也采用焊接结构。国内前几年掀起一股用铸造机架代替焊接机架的势头,这无疑是一种倒退行为。此外,铸钢是一种高能耗的工艺过程,从节约能源的角度也应大力发展焊接机架。颚式破碎机采用焊接机架才是长远发展的正确方向。另外,机架结构设计不合理也是使机重增加的重要原因。机架结构设计首先应以受力为依据,在满足强度、刚度的条件下,力求减轻重量。机架前壁载荷主要是由横向筋板所承受。一般情况下,破碎机都不需要加纵向筋板 1、2,如图 1-1所示。该机侧壁加强筋布置不合理,数量又太多,致使它的机重达)7.5t(同规格破碎机机重为5.5t)。当然,该机过重不完全是由这两个因素所造成。侧壁筋板位置和方向也应根据受力情况而定。图 1-2所示为英国某公司生产的大传动角(负支承)颚式破碎机机架简图。该机架侧壁布置有 1、2、 3三根筋板,筋板 1设置在主轴承侧面,筋板 3设置在主轴承后下方,这两块筋之间用筋板2连接起来构成一个“A”形框架。图1-3所示为该机受力分析。图中轴承所受最大力: 作用方向为 HA,正是图1-2侧壁加强筋1的方向。从而说明图1-2中侧壁筋板布置完全符合受力的要求。 动颚也是破碎机重量较大的零件,而且结构复杂,颚结构设计也应以动颚受力为依据,在满足强度、刚要求的条件下,尽量减轻重量。根据动颚受力分析可得,最大破碎力作用在动颚轴承偏上处,由此往上(头部)受力越来越小。原 250400,400600颚式破碎机是目前尚有多家生产动颚结构刚好与其受力要求相反,即轴承附近处截面小,越向头部截面越大,而且相差太悬殊。结果导致动颚强度低而重量又很大。这两种破碎机都是在轴承偏上处被折断而损坏。动颚的加强筋布置方式,也应按上述受力要求设计。已有的颚式破碎机加强筋横向厚度从上到下厚度一样。为符合受力条件,又满足重量轻的要求,可采用变厚度加强筋。即靠上部(头部)的加强筋厚度应小,越往下厚度越大。就是说,改原来矩形加强筋为梯形加强筋,这样会减轻动颚重量又保证有足够的强度。动颚两轴承之间部位的壁厚可适度减薄,借以减轻重量。 此外,应加强机架、动颚有限元的研究,进行机架、动颚有限元优化设计,达到机架、动颚重量轻又有高度的可靠性。其它,还有破碎腔、破碎机动力平衡等等都可以借助计算机进行优化设计。总之,应采用现代的设计方法代替原有的常规设计方法。 再者,由于焊接、铸造、热处理工艺等因素也都会对破碎机产生影响。所以,我们应提高设计制造工艺等综合水平以及采用液压调整排料口和液压保险,逐步使国产颚式破碎机达到世界一流水平。 图1-1 某破碎机焊接机架 图1-2 大传动破碎机机架 图1-3 大传动破碎机示力图图中轴承所受最大力: 作用方向为 HA,正是图2侧壁加强筋1的方向。从而说明图2中侧壁筋板布置完全符合受力的要求。 动颚也是破碎机重量较大的零件,而且结构复杂颚结构设计也应以动颚受力为依据,在满足强度、刚要求的条件下,尽量减轻重量。根据动颚受力分析可,最大破碎力作用在动颚轴承偏上处,由此往上(头部)受力越来越小。原 250400,400600颚式破碎机者目前尚有多家生产动颚结构刚好与其受力要求反,即轴承附近处截面小,越向头部截面越大,而且差太悬殊。结果导致动颚强度低而重量又很大。这两种破碎机都是在轴承偏上处被折断而损坏。 动颚的加强筋布置方式,也应按上述受力要求设计。已有的颚式破碎机加强筋横向厚度从上到下厚度一样。为符合受力条件,又满足重量轻的要求,可采用变厚度加强筋。即靠上部(头部)的加强筋厚度应小,越往下厚度越大。就是说,改原来矩形加强筋为梯形加强筋,这样会减轻动颚重量又保证有足够的强度。动颚两轴承之间部位的壁厚可适度减薄,借以减轻重量。 此外,应加强机架、动颚有限元的研究,进行机架、动颚有限元优化设计,达到机架、动颚重量轻又有高度的可靠性。其它,还有破碎腔、破碎机动力平衡等等都可以借助计算机进行优化设计。总之,应采用现代的设计方法代替原有的常规设计方法。 再者,由于焊接、铸造、热处理工艺等因素也都会对破碎机产生影响。所以,我们应提高设计制造工艺等综合水平以及采用液压调整排料口和液压保险,逐步使国产颚式破碎机达到世界一流水平。1.3复摆颚式破碎机的发展19世纪40年代,北美的采金热潮对颚式破碎机发展有重大的促进作用。19世纪中叶,多种类型的颚式破碎机被研制出来,并获得了广泛的应用。上个世纪末,全世界已有70多种不同结构的颚式破碎机取得了专利权。1858年,埃里.布雷克(El.Blake)取得了制造双肘板颚式破碎机的专利权。现在最常用的颚式破碎机是布雷克的颚式破碎机和更近代制造的单肘板颚式破碎机。颚式破碎机最大的弱点之一是它们在一个工作循环内只有一半时间进行工作。20世纪80年代中期,国外一些厂家已能生产各种大型颚式破碎机,例如美国Fuller Traylor公司生产的重型颚式破碎机,规格为1676mm2134mm,生产能力达1200t/h;德国PWH公司生产的最大双肘板颚式破碎机的给料口为2600mm1800mm,生产能力达2000t/h;英国Babbitless公司生产的BCS系列颚式破碎机,其生产能力可达6000t/h。20世纪80年代以来,我国颚式破碎机的研制工作与改进工作取得了一定的成果。北京矿冶研究总院的破碎机专家王宏勋教授和他的学生丁培洪硕士引用了“动态啮角”的概念,开发出GXPE系列深腔颚式破碎机,当时在国内引起了一定程度的轰动。该机与同种规格的破碎机相比,在相同工况条件下,处理能力可提高,齿板寿命可提高倍。该机采用负支撑零悬挂,具有双曲面腔型。第二代GXPE250400破碎机在第一代的基础上进行了全面改进,增大了破碎比,降低了产品粒度:最大给料粒度为220mm,生产能力为,排料口调整范围为,给料抗压强度小于300MPa。PEY4060液压保险颚式破碎机,以液压缸为过载保护装置,正支撑、正悬挂、深破碎腔。该机最大给料粒度为340mm,排料口调整范围为,生产能力为。第2章 总体设计过程2.1 基本结构和工作原理2.1.1 基本结构颚式破碎机的主体机构由机架、偏心轴、动颚板、定颚板、肘板共五个机构组成。另有其他辅助零件,如固定齿板、衬板、挡罩、垫片、滑块、推力板、止动螺钉、锁紧装置。图2-1 复摆颚式破碎机结构示意图2.1.2 工作原理带轮与偏心轴固联成一整体,它是运动和动力输入构件,即原动件,其余构件都是从动件。当带轮和偏心轴2绕轴线A转动时,驱使输出构件动颚3做平面复杂运动,从而将矿石压碎。颚式破碎机的工作原理如图2-2所示,其由动颚板、定颚板、偏心轴及推力板组成。动颚板上部与偏心轴相连,下部由推力板支撑。偏心轴转动时,动颚板不仅对定颚板作往复摆动,同时还沿定颚板有很大幅度的上下运动。动颚板上各点的运动轨迹如图2-4所示。动颚板上部的运动轨迹接近圆形,越向下水平运动幅度越小,运动轨迹也越呈椭圆形。图2-2 复摆颚式破碎机结构图图2-3 复摆颚式破碎机机构运动简图 图2-4 复摆颚式破碎机运动轨迹示意图2.2 主要参数表2.1颚式破碎机的基本参数型 号主要参数给矿口规格(mm)宽度X长度最大给矿粒度(mm)排矿口调整范围处理能力(t/h)电机功率(kw)重 量(t)PEF150×250150×2501251040145.51.1PEF250×400250×4002102080520152.8PEF400×600400×6003504016017115306.5PEF600×900600×90048075200561927517.6PEF900×1200900×120065015018014020011061.97PEF1200×15001200×1500850130180180128PEF1500×21001500×21001100250300400500250219根据我毕业设计的要求,已知条件如下:由于给定最大进料粒度:=500mm 对于小型破碎机的给矿口宽度B: B = (1.11.25) = (1.11.25) ×500 =550mm625mm取B=600mm 因为给料口长度越长,生产效率就越高,但动颚受力越不均匀,所以给料口长度通常为:大型破碎机:L = (1.251.5)B中小型破碎机:L = (1.51.6)B用于细碎作业的小型扁口颚式破碎机:L=(23.6)B本设计的破碎机为中小型破碎机,则L=1.6×600=960(mm)颚式破碎机排料口的长度与给料口的长度相同,排料口的最小宽度为: 最大排料粒度,mm; 动颚在排料口的水平行程,mm;则在此, 。破碎腔的深度与破碎比有关,但是深度太大时,易产生石料过粉碎现象。深度可由下式确定:H=(2.252.5)BH=2.5×600=1500(mm) 2.2.1 钳角破碎机的动颚与固定颚之间的夹角称之为钳角。当物料破碎时,必须使物料块既不向上滑动,也不会从矿中跳出来。为此,钳角应 该保证物料块与颚板工作表间产生足够的摩擦力以阻止物料被挤出去。 图2-5 表示从力学角度推算钳角的计算图式当图2-5 物料块受力分析物料能被夹持在破碎腔内,不被推出机外时,这些力应相平衡,即在x, y方向的分力之和应该等于零。即:x方向 y方向 联合以上两式可得: 由 故式中:-钳角 -物料与颚板间的摩擦角 -物料与颚板间摩擦系数为了保证破碎机工作是物料块不致被推出机外,必须令 。 一般情况下,不宜超过23°。正确的选择钳角对于提高破碎机的破碎效率具有很大的意义。减小钳角可使破碎机的生产能力增加,但会引起破碎比的减小。增大钳角,虽可增大破碎比,但同时又减少生产能力。因此,在选择钳角时,应当全面考虑。在此,初取 。2.2.2 动颚水平行程 动颚摆动行程是破碎机最重要的结构参数。在理论上,动颚摆动行程应按物料达到破坏时所需之压缩量来确定。然而,由于破碎板的变形,及其与机架间存在的间隙等因素的影响,实际选取的动颚摆动行程远远大于理论上求出的数值。目前,常用下端水平行程的计算公式有:下端点许用水平行程: 式中: -最小排料口尺寸(mm) B-进料口尺寸(mm)由 实际上,动颚行程是根据经验数据确定的,通常对于大型颚式破碎机,S=2545mm;中小型颚式破碎机,S=1215mm。在此,参照颚式破碎机现有的设计经验,初取 则合理。2.2.3 传动角传动角大小影响着机构的传动效率,在推力板长度一定的情况下,加大传动角会提高机构的传动效率,但必须要求偏心距增大才能保证行程的要求,这就导致动颚衬板上部水平行程的偏大,物料的过粉碎引起排料口的堵塞,使功耗增加。同时,也将使定颚衬板下部加速磨损。故传动角取: 在此设计中我选择。2.2.4 破碎比的计算 衡量单台破碎机的破碎效果还可以用破碎比表示。破碎比即破碎前原料粒度与破碎后产品粒度之比。它表示破碎物料经破碎后减小的程度。破碎比有如下的几种计算方法: (1) 破碎比用破碎前物料最大平均直径与破碎后产品最大平均直径之比计算。 物料平均直径是指物料长、宽、厚的平均直径。 (2)用间接表示破碎比,即破碎机给料口有效宽度和公称排料口尺寸b之比。 式中 B破碎机的给料口宽度(mm) b破碎机的开边制公称排料口宽度(mm) 带入数据的 (3)用破碎前后各种粒度混合物料的等值粒度之比来计算破碎比。 以上各种破碎比的计算公式根据不同的要求进行选择计算。表示破碎机的破碎效果有能表示处理矿石的要咬入能力;表示该台破碎机的公称破碎比;能够科学地真实地反映该破碎机的破碎效果。2.2.5 偏心距不论动颚齿面轨迹性能值分配是否合理,在机构其他尺寸参数不变的情况下,增大曲柄半径,会使颚板齿面上各点的行程值增大,一方面可以提高生产力,另一方面也增大了机器的功耗。由于曲柄半径的改变并不能有效地调整齿板轨迹性能值的分配,因此,只有在调整其他参数仍得不到要求的行程值时,方以曲柄半径作为设计变量。从这个意义上讲,曲柄可作为设计变量,也可以按现有的设计经验确定。通常,对于复摆式颚式破碎机,由于初定值 ,则 取 偏心距对破碎机生产率和传动功率都有影响。在其它条件相同的情况下,增大偏心距可使动颚行程增加而提高生产率,但也因此增加功率消耗。在传统设计中,偏心距是由动颚行程通过画机构图来初步确定的。在这个破碎机的设计中我根据机构图选择了12mm。2.2.6 悬挂高度悬挂高度是指曲柄支承中心到定颚板上端水平面间的垂直距离。按照结构特点,可把复摆颚式分为三种类型,即正悬挂(h>0),零悬挂(h=0)和负悬挂(h<0)三种结构。悬挂高度实际上决定了动颚上端点在连杆上的相对位置。动颚上端点相对于动颚轴承中心点愈高,其水平行程值愈大且特征值愈小。因此,较小的悬挂高度不但可以增大上端点水平行程值,减小特性值,而且可以降低机器高度尺寸,减轻机重。在此,采用正悬挂型设计,即 h>0 。2.2.7 动颚的行程特性值复摆颚式破碎机动颚上的点一般作平面运动,其轨迹为封闭曲线,进料口处轨迹呈