北京市2017年中考数学试题(附答案解析).docx
北京市2017年中考数学真题试题一、选择题(本题共30分,每小题3分)1.如图所示,点到直线的距离是( )A线段的长度 B 线段的长度 C线段的长度 D线段的长度【答案】B.【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B.考点:点到直线的距离定义2.若代数式有意义,则实数的取值范围是( )A B C D【答案】D.考点:分式有意义的条件3. 右图是某个几何题的展开图,该几何体是( )A 三棱柱 B 圆锥 C四棱柱 D 圆柱【答案】A.【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图4. 实数在数轴上的对应点的位置如图所示,则正确的结论是( )A B C. D【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是( )A B C. D【答案】A.【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A.考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是( )A 6 B 12 C. 16 D18【答案】B.【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B.考点:多边形的内角与外角7. 如果,那么代数式的值是( )A -3 B -1 C. 1 D3【答案】C.考点:代数式求值8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自“一带一路”贸易合作大数据报告(2017)根据统计图提供的信息,下列推理不合理的是( )A与2015年相比,2016年我国与东欧地区的贸易额有所增长 B2011-2016年,我国与东南亚地区的贸易额逐年增长 C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元 D2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【答案】A.考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如下图所示.下列叙述正确的是( )A两人从起跑线同时出发,同时到达终点 B小苏跑全程的平均速度大于小林跑全程的平均速度 C. 小苏前15跑过的路程大于小林前15跑过的路程D小林在跑最后100的过程中,与小苏相遇2次【答案】D.考点:函数图象10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断: 当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618; 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A B C. D【答案】B.【解析】试题分析:当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;由图可知频数稳定在了0.618,所以估计频率为0.618,正确;.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:_【答案】 (答案不唯一).【解析】试题分析:3<x<4, , 9<x<16,故答案不唯一 , 考点:无理数的估算.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为_【答案】 .考点:二元一次方程组的应用.13.如图,在中,分别为的中点.若,则 【答案】3.【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC的中点, , , , .考点:相似三角形的性质. 14.如图,为的直径,为上的点,.若,则 【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程: 【答案】将COD绕点C顺时针旋转90°,再向左平移2个单位长度得到AOB(答案不唯一).【解析】试题分析:观察图形即可,将COD绕点C顺时针旋转90°,再向左平移2个单位长度得到AOB,注意是顺时针还是逆时针旋转.考点:几何变换的类型16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆.请回答:该尺规作图的依据是 【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤. 17. 计算:.【答案】3.【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可.试题解析:原式=4× +1-2+2=2+1-2+2=3 .考点:实数的运算18. 解不等式组: 【答案】x<2.考点:解一元一次不等式组19.如图,在中,平分交于点.求证:.【答案】见解析.【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出ABD=C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:AB=AC, A=36°ABC=C=(180°-A)= ×(180°-36°)=72°,又BD平分ABC, ABD=DBC=ABC=×72°=36°, BDC=A+ABD=36°+36°=72°, C=BDC, A=ABAD=BD=BC.考点:等腰三角形性质.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了海岛算经九题古证.,(以上材料来源于古证复原的原理、吴文俊与中国数学和古代世界数学泰斗刘徽)请根据上图完成这个推论的证明过程证明:,(_+_)易知,_=_,_=_可得 【答案】 .考点:矩形的性质,三角形面积计算.21.关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求的取值范围. 【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22. 如图,在四边形中,为一条对角线,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.【答案】(1)证明见解析.(2).【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:E为AD中点,AD=2BC,BC=ED, ADBC, 四边形ABCD是平行四边形,AD=2BE, ABD=90°,AE=DEBE=ED, 四边形ABCD是菱形.(2)ADBC,AC平分BAD BAC=DAC=BCA,BA=BC=1, AD=2BC=2,sinADB=,ADB=30°, DAC=30°, ADC=60°.在RTACD中,AD=2,CD=1,AC= .考点:平行线性质,菱形判定,直角三角形斜边中线定理.23. 如图,在平面直角坐标系中,函数的图象与直线交于点.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.当时,判断线段与的数量关系,并说明理由;若,结合函数的图象,直接写出的取值范围.【答案】(1)见解析.(2)0<n1或n3.【解析】试题分析:(1)先求A 点坐标,在代入,即可求出结果;(2)令y=1,求出PM的值,令x=1求出PN的值即可;(3)过点P作平行于x轴的直线,利用图象可得出结果.试题解析:(1) 函数(x>0)的图象与直线y=x-2交于点A(3,m) m=3-2=1,把A(3,1)代入 得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象24.如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:; (2)若,求的半径.【答案】(1)见解析;(2) 【解析】试题分析:(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:DCOA, 1+3=90°, BD为切线,OBBD, 2+5=90°, OA=OB, 1=2,3=4,4=5,在DEB中, 4=5,DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数 25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门甲0011171乙(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为_;.可以推断出_部门员工的生产技能水平较高,理由为_.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;见解析.按如下分数段整理 按如下分数段整理数据:成绩人数部门甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400× =240(人); ´ = b.答案不唯一,言之有理即可可以推断出甲部门员工的生产技能水平较高,理由如下:甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;甲部门生产技能测试中,没有生产技能不合格的员工可以推断出乙部门员工的生产技能水平较高,理由如下:乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高考点:众数,中位数.26.如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:012345602.02.32.10.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为_.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6(2)如图所示:(3)作y=x与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数27.在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点.(1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.【答案】(1)y=-x+3;(2)7<<8.【解析】试题分析:(1)先求A、B、C的坐标,用待定系数法即可求解;(2)由于垂直于y轴的直线l与抛物线要保证,则P、Q两点必位于x轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x轴和过顶点的直线,继而求解.(2).由,抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ,+=4.令y=-1,y=-x+3,x=4. ,3<<4, 即7<<8, 的取值范围为:7<<8.考点:二次函数与x轴的交点问题,待定系数法求函数解析式,二次函数的对称性.28.在等腰直角中,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.【答案】(1)试题解析:(1) AMQ=45°+.理由如下:PAC=,ACB是等腰直角三角形, PAB45°,AHM=90°,AMQ=180°AHM-PAM45° .(2)线段MB与PQ之间的数量关系:PQ= MB.理由如下:连接AQ,过点M做MEQB,ACQP,CQ=CP, QAC=PAC=,QAM=+45°=AMQ, AP=AQ=QM,在RTAPC和RTQME中, RTAPCRTQME, PC=ME, MEB是等腰直角三角形,,PQ= MB.考点:全等三角形判定,等腰三角形性质 .29在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点(1)当的半径为2时,在点中,的关联点是_点在直线上,若为的关联点,求点的横坐标的取值范围(2)的圆心在轴上,半径为2,直线与轴、轴交于点若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围【答案】(1), x 或 x,(2)2x1或2x2试题解析: (1),点 与的最小距离为 ,点 与的最小距离为1,点与的最小距离为,的关联点为和根据定义分析,可得当直线y=-x上的点P到原点的距离在1到3之间时符合题意; 设点P的坐标为P (x ,-x) ,-当OP=1时,由距离公式可得,OP= ,解得 ,当OP=3时,由距离公式可得,OP= ,,解得, 点的横坐标的取值范围为 x 或 x 如图2,当圆与小圆相切时,切点为D,CD=1 ,=如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 RtOCB中,由勾股定理得OC= , C点坐标为 (2,0) C点的横坐标的取值范围为2 2 ; £ 综上所述点C的横坐标的取值范围为 或 考点:切线,同心圆,一次函数,新定义.27