欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高考积分-导数知识点精华总结.doc

    • 资源ID:29906178       资源大小:374KB        全文页数:17页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考积分-导数知识点精华总结.doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考积分-导数知识点精华总结高考积分-导数知识点精华总结定积分一、知识点与方法:1、定积分的概念设函数在区间上连续,用分点把区间 等分成个小区间,在每个小区间上取任一点作和式(其中为小区间长度),把即时,和式的极限叫做函数在区间上的定积分,记作:,即。这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式。(1)定积分的几何意义:当函数在区间上恒为正时,定积分的几何意义是以曲线为曲边的曲边梯形的面积。(2)定积分的性质(k为常数);(其中。2、微积分基本定理如果是区间上的连续函数,并且,那么:3、定积分的简单应用(1) 定积分在几何中的应用:求曲边梯形的面积由三条直线,轴及一条曲线围成的曲边梯的面积。如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)f2(x)0),及直线xa,xb(a <b)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC。(2) 定积分在物理中的应用:求变速直线运动的路程(为速度函数)求变力所做的功 二、练习题1、计算下列定积分: (1) (2) (3)(4) (5)2、求下列曲线所围成图形的面积: (1)曲线; (2)曲线。3、的值是: A. 4 B. 2 C. D. 04、曲线所围成图形的面积是: A. 1 B. C. D. 5、已知自由下落物体的速度为,则物体从到所走过的路程是: A. B. C. D.6、已知,且,则 7、已知,求的最大值。8、已知为二次函数,且,求: (1) 的解析式; (2) 在上的最大值与最小值。导 数1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.注:是增量,我们也称为“改变量”,因为可正,可负,但不为零(趋向0).已知函数定义域为,的定义域为,则与关系为.2. 函数在点处连续与点处可导的关系:函数在点处连续是在点处可导的必要不充分条件.可以证明,如果在点处可导,那么点处连续.事实上,令,则相当于.于是如果点处连续,那么在点处可导,是不成立的.例:在点处连续,但在点处不可导,因为,当0时,;当0时,故不存在.注:可导的奇函数函数其导函数为偶函数.可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为4. 求导数的四则运算法则:(为常数)注:必须是可导函数.若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设,则在处均不可导,但它们和在处均可导.5. 复合函数的求导法则:或复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:函数单调性的判定方法:设函数在某个区间内可导,如果0,则为增函数;如果0,则为减函数.常数的判定方法;如果函数在区间内恒有=0,则为常数.注:是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x) = 0,同样是f(x)递减的充分非必要条件.一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在附近所有的点,都有,则是函数的极大值,极小值同理)当函数在点处连续时,如果在附近的左侧0,右侧0,那么是极大值;如果在附近的左侧0,右侧0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0. 此外,函数不可导的点也可能是函数的极值点. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数,使=0,但不是极值点.例如:函数,在点处不可导,但点是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:I.(为常数) () II. III. 求导的常见方法:常用结论:.形如或两边同取自然对数,可转化求代数和形式.无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得-

    注意事项

    本文(高考积分-导数知识点精华总结.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开