欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    EOF的源程序 MATLAB.doc

    • 资源ID:29930143       资源大小:47.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    EOF的源程序 MATLAB.doc

    > mssa.rar > EEOF.M function E,V,A,C=eeof(X, M, convert) % Syntax: E,V,A,C=eeof(X, M); E,V,A,C=eeof(X, M, 1); % This function performs an extended empirical orthogonal % function (EEOF) analysis of matrix 'X', for embedding dimension 'M'. % Each of the L columns of X is a time series of length N. % % Returns: E - eigenfunction matrix. (LM by LM) % V - vector containing variances (unnormalized eigenvalues). % A - matrix of principal components. % C - lag-covariance matrix. % % V is ordered from large to small: E and A are sorted accordingly. % % Note that X is assumed to be centered. To center the data, use % the commands: % r,c=size(X); X=X-ones(r,1)*mean(X); before running EEOF. % If you also want to standardize the data, use: % X=X./(ones(r,1)*std(X);. % % If a third argument is supplied, the eigenfunctions/values will % be reordered into the same format as MSSA output - i. e. L blocks % of size M rather than M blocks of size L. % % This function provides the same output, within numerically determined % limits, as MSSA methods using Broomhead-King type covariance estimation: % it is intended as a check on those functions. % % Note that this function is *extremely* computationally intensive % for large matrices and lags. For example, if X is 1000 by 1000, % and M = 5, EEOF will take about 10 hours on a Cray YMP! Inputting % a subset of the PCs of X rather than the full data matrix can % substantially reduce the computational load. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to ericgi.alaska.edu % N,L=size(X); if M*L>=N-M+1, disp('Warning: Covariance matrix may be ill-conditioned.'), end % Create the extended matrix: T=zeros(N-M+1,M*L); for i=1:M T(:,L*(i-1)+1:L*i)=X(i:N-M+i,:); end % Compute the eigenvectors/values of the covariance matrix: C=(T'*T)/(N-M+1); clear X E,V=eig(C); V=diag(V); A=T*E; % compute principal components if nargin=3 % Prepare MSSA-style output: % sort E,V,C, and A from M blocks of L to L blocks of M. ind=1:L:(M-1)*L+1; for i=1:L, index=index ind+i-1; end E=E(index,index); V=V(index); % sort the covariance matrix and PCs: C=C(index,index); A=A(:,index); end % Sort eigenvalues/vectors/PCs in descending order: V,ind=sort(-V); V=-V' E=E(:,ind); A=A(:,ind); 窗体底端 > mssa.rar > EOF.Mfunction F,L,B=eof(X,n,s); % EOF calculates the empirical orthogonal functions % and amplitudes (principal components) of the data matrix 'X'. % Syntax: F,L,B=eof(X); F,L,B=eof(X,.9,'norm'); % % Input: X - data matrix. For a standard (S-mode) EOF analysis, % the columns of X are time series, while the rows % are spatial maps. The eigenfunctions in this case % will be spatial patterns, and the principal % components are time series. % n - number of eigenfunctions to return (optional). % If n is less than 1, it is interpreted as % a fractional variance (e. g. n=.9), and enough % eigenvectors are returned to account for n*100% % of the variance. The default is to return all EOFs. % s - Normalization option. If s='norm', then each % column of X will be normalized (assigned % unit variance). If s is not specified, the % data are not normalized. % % Output: F - eigenfunction matrix (columns are eigenvectors). % L - vector of eigenvalues.(all eigenvalues are returned) % B - principal components matrix. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to ericgi.alaska.edu % r,c=size(X); if c>r, disp('Warning: Covariance matrix may be ill-conditioned.'), end if nargin=1 n=c; s='none' elseif nargin=2 if isstr(n) s=n; n=c; else s='none' end end X=X-ones(r,1)*mean(X); % center the data if s='norm' X=X./(ones(r,1)*std(X); % normalize elseif s='none' error('Improper normalization option. Please check inputs.') end S=X'*X; % compute the covariance matrix F,L=eig(S); clear S % sort eigenvectors, eigenvalues L,i=sort(diag(-L); L=-L' F=F(:,i); % figure out how many eigenvectors to keep: if n<1 % if n is in the form of fractional variance, convert to an index var=n*sum(L); i=find(cumsum(L)>=var); n=i(1); end if c>n, F=F(:,1:n); end % keep only first n eigenvectors B=X*F; % calculate principal components (first n) > mssa.rar > EOFCENT.Mfunction F,L,B=eofcent(X,n); % EOF calculates the empirical orthogonal functions % and amplitudes (principal components) of the data matrix 'X'. % Syntax: F,L,B=eof(X); F,L,B=eof(X,.9); % % Input: X - data matrix. For a standard (S-mode) EOF analysis, % the columns of X are time series, while the rows % are spatial maps. The eigenfunctions in this case % will be spatial patterns, and the principal % components are time series. % n - number of eigenfunctions to return (optional). % If n is less than 1, it is interpreted as % a fractional variance (e. g. n=.9), and enough % eigenvectors are returned to account for n*100% % of the variance. The default is to return all EOFs. % % Output: F - eigenfunction matrix (columns are eigenvectors). % L - vector of eigenvalues.(all eigenvalues are returned) % B - principal components matrix. % % EOFCENT does the same thing as EOF, but does not allow the data matrix to % be modified within the function, thus avoiding the memory penalty of passing % the large data matrix into the function. If you want to center or % standardize the data, you must do it in the main workspace before calling % EOFCENT The commands "r,c=size(X); X=X-ones(r,1)*mean(X);" will center the % data. If you then want to standardize the data, use "X=X./(ones(r,1)*std(X);". % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to ericgi.alaska.edu % r,c=size(X); if c>r, disp('Warning: Covariance matrix may be ill-conditioned.'), end if nargin=1 n=c; end S=X'*X; % compute the covariance matrix F,L=eig(S); clear S % sort eigenvectors, eigenvalues L,i=sort(diag(-L); L=-L' F=F(:,i); % figure out how many eigenvectors to keep: if n<1 % if n is in the form of fractional variance, convert to an index var=n*sum(L); i=find(cumsum(L)>=var); n=i(1); end if c>n, F=F(:,1:n); end % keep only first n eigenvectors B=X*F; % calculate principal components (first n) 窗体底端窗体底端6 底底) " ( / . "* . . : := ; =; > " ; / ,. / </: / ; ( ;)( ( . " ; ) . ;* ; = ,. ' ;) % . . / %.;) . ") ) - )( %. - ) ( - . : . . %0 . .) ( - . , - %;) ( ,: . ; = , . / : " " / ) ( % % ;:, > ; =; > ( ;)(* , <: ; : ;)( ( ; %;' ) ' ' ) * ( /' = % ; ;= ) = ;' =; = ,' - : ( ; =% . / %. ) ( - . ( . ) , = . . . %0* ,) ( . - . . , - . %;' ' = , ( , . ' ( ; , , . > . ". / / . ./ 底; ,(;) ' - : / ; ,=;) , (: ; ; = ;- ; *- = , : = ;*;) ; ; (): / ;:+-() +-*: ;),+( : ) ' -= ; % / %. ! ,0 0 %. : % . %.; ) /= : . (*,( ;( : %. : %. - . . ( - ) %. . ; ( ) , ) ,

    注意事项

    本文(EOF的源程序 MATLAB.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开