S参数的介绍以及一些理解.doc
关于S参数的一些理解无源网络如电阻、电感、电容、连接器、电缆、PCB线等在高频下会呈现射频、微波方面的特性。S参数是表征无源网络特性的一种模型,在仿真中即用S参数来代表无源网络,在射频、微波和信号完整性领域的应用都很广泛。 本文将从S参数的定义,S参数的表达方式,S参数的特性,混合模式S参数,S参数测量等多个方面介绍S参数的一些最基本的知识。1,S参数的定义人们都喜欢用一句话来概括一个术语。 譬如用一句话来表达什么是示波器的带宽,笔者概括为:带宽就是示波器前端放大器幅频特性曲线的截止频率点。如何用一句话来回答什么是S参数呢? 笔者在网上搜索了很多关于S参数的文章,现摘录几段关于S参数的定义。在维基百科上,关于S参数的定义是:Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix) describe the electrical behaviors of linear electrical networks when undergoing various steady state stimuli by electrical signals. The parameters are useful for electrical engineering, electronics engineering, and communication systems design. 翻译成中文:散射参数或者说S参数描述了线性电气网络在变化的稳态电信号激励时的电气行为。 该参数对于电气工程、电子工程和通信系统的研发是很有用的。( 抱歉,英语水平太差,翻译得很别扭。)这个定义似乎不够好! 在另外一篇文章中的定义是:The S-parameter (Scattering parameter) expresses device characteristics using the degree of scattering when an AC signal is considered as a wave. The word “scattering” is a general term that refers to refl ection back to the source and transmission to other directions. 中文含义是:“S参数是利用器件在受到带有“波”特点的AC信号激励下的散射程度来表达器件的特征。”这个定义比较简洁,但可能翻译得不准确。作者试图表达S参数主要是用于描述在高频信号下的特性,但很不直截了当。 另外一篇文章中的定义更是简洁明了: Scattering parameters or S-parameters are commonly used to describe an n-port network operating at high frequencies like RF and microwave frequencies. 中文含义是:“S参数通常用来描述工作在类似于RF和微波频率的高频下的n端口网络。” 在一篇测量相关的应用文档中对S参数的表达是: “Scattering” or s parameters are a measure of reflected power and transmitted power in a network as a function of frequency. The “Network” could be a coax cable, passive antenna, active amplifier, microwave filter, etc. S-parameters have magnitude and phase Typically, magnitude is measured in dB, phase is measured in degrees. 中文含义是:“S参数是测量“传输网络”的反射功率和传输功率,最终测量结果是和频率相关的。这里的“传输网络”是可能同轴电缆、无源衰减器、有源功放、微波滤波器等。 S参数有幅值的S参数和相位的S参数。一般地说,幅值测量是以dB表示,相位是以角度表示。” 这个表达是从测量角度来说的,似乎不能作为一种术语的定义。笔者个人觉得比较糟糕的一个定义是在堪称经典的国外教材上,叫射频电路设计理论与应用(电子工业出版社,Reinhold Ludwig和Pavel Bretchko著)。 在其第111页的描述是:“简单地说,S参量表达的是电压波,它使我们可以用入射电压波和反射电压的方式定义网络的输入、输出关系。 根据图示,可以定义为归一化入射波电压an和归一化反射电压波bn。” 这个教材有英文版在国内出版,我没查英文是怎么表达的,但这个翻译过来的中文定义确是很难懂。但是上面几种表达综合在一起,确是给了我们一个关于什么是S参数的概念。在物理意义上到底该如何理解S参数的本质呢?我们打一个比方:假设流速极快的水流过了两个连接在一起但直径不一样的水管,在这两个水管的交界处会产生什么现象? 一部分水会从一个水管流到另外一个水管,还有一部分水会反射回来,但如果水的流速很慢,所有的水都会从一个水管全部流到另外一个水管,没有水反射回来的。 我们很容易理解这个现象。 那么,我们将水管换成电阻,电阻两端连接的是导线,当电信号从导线流经电阻时会发生什么现象? 答案是:当电信号的速率很低或直流信号时,所有的电信号能量除了转换为热能消耗掉,其余的都会流出电阻。 输入电流等于输出电流。也就是说可以应用我们在大学里学习到的基尔霍夫电压和电流定律。 但如果电信号的速率很高,“电阻”就不是我们过去意义上理解的电阻了,电阻会表现出射频特性。 流过电阻的电信号一部分会被反射回来,而且反射回来信号的相位不一定是和入射的信号完全反相,是一个矢量。 当我们将电阻作为一个“黑箱子”,来描述电阻的特征时,该怎么描述? S参数即是一种描述电阻在表现为射频特性的高频信号激励下的电气行为的工具,而且它的描述的方法是以电阻对入射信号作出“反应”即“散射”后,从电阻“外部”“散射”出的可测量的物理量来实现的,测量到的物理量的大小反应出不同特性的电阻会对相同的输入信号“散射”的程度不一样,这种不一样的散射程度就可以用来描述电阻的特性,而且这种表达方法已成为作为一种非常有用的电气模型。 这些物理量被称为入射电压,反射电压,传输电压,等等。 不只是电阻会表现这种特性,很多无源器件如电缆,连接器,PCB走线等传输介质都会表现出这种特性,因此都可以用S参数来表征。图1表示了S参数的基本概念。图1 S参数的概念2,S参数的表达方式 S参数的表达方式多种多样。在数学表达上是一个矩阵形式,矩阵中的每个数值代表了一定的物理意义。在图形表达上,则是一个横轴表示频率,纵轴表示散射程度的曲线。在仿真中,S参数就是代表了器件特性的一种模型,这个模型在仿真应用中的“输入”是一个叫touchstone格式的文件。2.1, S参数矩阵S参数矩阵如图2所示。对传输网络的输入输出端口都要编上数字,数字次序不一样代表的物理含义不一样。如Sij表示为入射端口为j,检测端口为i。记住这个次序就不会混淆矩阵中每个符号的含义。 反射表示为i=j,传输表示为ij,因此,对于一个n端口的网络,就有n的平方个参数值,将这些数值列在一起就组成了S参数矩阵。图2 S参数矩阵S参数是两个物理量的比值,因此严格讲是没有单位的,但通常当表示幅值的S参数时,一般按对数的算法,最终用dB来表示,表1是dB和衰减比值之间的关系。表1 S参数的幅值单位我们先用二端口网络来了解S参数矩阵中的数值在理论上如何得到的。图3为测量二端口网络前向S参数时的微波功率传输示意图。入射能量(a1)输入到端口1,有一部分能量(b1)被反射回来,另外一部分能量(b2)输出到端口2。S参数只能在输入、输出端口完全匹配的条件下才能确定。测量“前向”S参数时,在输入端施加激励信号,在输出端接匹配电阻。图3 二端口网络前向S参数测量示意图S11=b1/a1=反射功率/入射功率。 S11表示在输出端端接匹配情况下的输入端反射系数,通常被称为回波损耗(return loss)。S21=b2/a1=输出功率/输入功率。 S21表示在输出端端接匹配情况下的前向传输增益(系数),通常被称为插入损耗(inset loss)。 测量“反向”S参数时,在输出端施加激励信号,在输入端接匹配电阻,如图4所示。图4 二端口网络反向S参数测量示意图S22=b2/a2=反射功率/入射功率。 S22表示在输入端端接匹配情况下的输出端反射系数。S12=b1/a2=输出功率/输入功率。 S12表示在输入端端接匹配情况下的反向传输增益(系数)。刚开始记这些参数时可能有些容易混淆。正向和反向是相对表达上的方便而言的,无源器件一般来说正向和反向的一致的结果。其实,我们牢记住S21表示b2/a1就可以了,其它的就可以类推了。相同的后缀S11,S22表示反射,比较容易记住。可以用下面的两个关系式来完整地描述二端口网络的输入、输出和S参数的关系。用图形描述这些关系式如图5所示。图5 二端口网络S参数关系式单端四端口或更多端口网络的S参数和二端口网络的测量方法类似。在某一端施加激励信号,其它所有端口端接匹配电阻。得到的S参数矩阵如图6所示。图6 四端口网络S参数矩阵四端口网络S参数中,S11,S22,S33,S44分别表示各端口的回波损耗/反射系数。S21,S12,S34,S43表示插入损耗/传输增益。 S13,S31,S24,S42表示近端串扰(near end crosstalk)。S14,S41,S23,S32表示远端串扰(far end crosstalk)。 图7表示了串扰的物理意义。近端串扰表示在某端口施加激励,在相近的一端的另外一个端口耦合到的信号。远端串扰的含义就是在较远的一端耦合到的信号。示波器指标中有一项通道隔离度其实就是串扰的一种表现。图7 串扰的含义 2.2,S参数图S参数图可以更加直观地理解S参数的物理意义。S参数图的横坐标表示频率的大小,纵坐标表示幅度或相位的“散射”程度,图8的左图表示S11和S21的幅值S参数图,右图表示S12和S22的幅值S参数图。 S21和S12表示的二端口网络在不同频率正弦信号作用下的增益,整体上呈现低通特性,随着频率的增加,能量衰减越大,传输到另外一端的能量就越小,这其实和示波器前端放大器的频响曲线的含义是一样的。 对于频率越高的信号,经过相同的PCB或电缆之后的幅值衰减得越快。 所谓去加重和预加重就是针对传输网络的这种特性补偿高频衰减的一种解决办法。 S11和S22则恰恰相反,随着频率的升高,反射回来的能量就越大。图8 S参数图2.3、TouchStone文件TouchStone文件是一种被用于各种仿真软件的标准格式的文件,仿真软件中调用此文件来代表一个器件或电路。 TouchStone文件名都是以.snp为后缀名。n表示端口数。.s2p即表示一个2端口网络。 s4p表示4端口网络。图9是一个二端口网络的TouchStone文件的实例。该文件是一个纯文本文件,可直接用记事本打开。 二端口网络的S参数总共有9列,按频率,幅值S11,相位S11,幅值S21,相位S21,幅值S12,相位S12,幅值S22,相位S22的次序排列。 频率按由小到大的从上往下排列,中间的间隔没有严格规定,但必须按从小到大的顺序。 值得注意的一点是,用VNA测量得到的TouchStone文件中,没有DC点,即没有0频率,是不能直接被仿真软件调用的,需要进行编辑,补充0频率及相应的S参数数值。该实例中,第一行中的dB表示复数的表达形式,这里的dB表示幅值单位是dB,相位单位是角度。文件中的这个位置上如果显示是MA,则表示幅度和相位都用实际的数值表示。 R50表示匹配的参考电阻是50欧姆。图9 二端口网络TouchStone文件实例3, 直接用于仿真的S参数的特性不是任何S参数文件都可以直接用于仿真软件。可直接用于仿真软件的S参数需要具备以下特点:1,遵循三大S参数特性原则:无源性(Passivity),互易性(Passivity),因果性(Causality)。VNA产生的S参数由于不遵循这三个特性的原则,需要另外的软件来做这三个原则的检查验证之后才能用于仿真。 2,有DC点。 VNA产生的S参数不带有DC点,需要另外的方法测量出DC时的S参数值。 3,对于差分信号系统,需要混合模式S参数。VNA不能直接产生混合模式S参数。 4,S参数以touchstone文件格式保存。· 无源性(Passivity) 对于一个无损网络,S矩阵是一个单位矩阵,因此,对于二端口网络存在下面的关系式: 由于没有损耗,所有散射的总量应是100%。当S21(S11)大的时候,S11(S21)就会小一些,这从前面的S参数曲线可以看出来。 对于无源的二端口网络,因此,一个无源器件的S参数不会大于1(0dB)。VNA测量的S参数结果如果没有经过软件进行无源性验证,其S参数值会出现出现大于0dB的情形,不能直接用于仿真软件。 表示为功率散射比,这个值越小,说明损耗越大。 · 互易性(Passivity)如果一个器件是可交换方向使用,而不是单相的如隔离器、环行器,S矩针是对称的,因此,Sij=Sji。 · 因果性(Causality) 所谓因果性就是先有激励才有输出。对于无源系统S参数,由于信号的传输一定会产生一定的延时,因此无源系统的S参数应该是符合因果性原理的,但实际测得的S参数往往会由于种种原因产生一定的非因果性。很多信号完整性仿真软件需要符合因果性特征的S参数,否则仿真时可能会产生发散现象,导致不正确的仿真结果。4,混合模式的S参数 差分传输系统早已成为高速信号系统传输的主流。如果差分传输线的距离很近,差分线之间能很好的耦合,差分信号完全对称,任何引入的噪声对两条差分传输线的的影响是相同的,那么在芯片的接收端,由于减法运算,引入的共模噪声就被消除了。然而,实际的差分系统并不是完美的,构成差分信号的两个单端信号本身的不平衡,两个通道的长度不相等,耦合不紧密等都会导致能量由差模向共模转换。由于实际的差分信号总是由差模信号和共模信号组成( ),单端的四端口S参数矩阵并不能提供关于差模和共模匹配和传输的有洞察力的信息。因此,1995年提出的混合模式S参数成为评价差分传输系统的重要工具。笔者常说,各种各样的串行数据标准描述的都是关于“两根线”的故事。如果不是用来传输差分信号,这“两根线”组成的是一个单端四端口的网络,单端四端口S参数矩阵描述了每个端口受到激励分别有什么样的响应。如果是用来传输差分信号,这个单端四端口网络就可以理解为了一个差分二端口网络,如图10所示,混合模式S参数从物理意义上理解正是描述了成对的两根线对两个信号之和(共模)和两个信号之差(差模)的分别有什么样的响应。图10 混合模式S参数测量 单端四端口S参数和混合模式S参数之间是可以相互转换的,如图11所示。因此通过测量单端四端口的S参数来推导出混合模式的S参数。图11 单端四端口S参数和混合模式S参数之间的转换混合模式S参数矩阵四个象限中包含了四种类型的混合模式S参数。第一象限以Scc开头的表示共模S参数,第四象限以Sdd开头的表示差模S参数。 其它两象限的Sdc表示差模向共模的转换,Scd分别共模向差模的转换。如果这两根线有很好的对称性,Sdc和Scd为零,表示差模和共模是完全独立的。 Sdd21表示差分端口1到差分端口2的差模增益,其它符号的含义类推。用混合模式S参数表示两端口差分系统的输出和输入之间的关系式如下:bd1表示1端口的差分输出,ad1表示1端口的差分输入。5,S参数的测量方法 S参数的测量方法有两种,一种是基于扫频测量的原理(VNA),另外一种是基于快沿阶跃响应的原理(TDR)。 图12是VNA的原理框图,主要包括以下部分: (1)激励信号源:提供感兴趣的频率范围内的入射信号;(2)信号分离装置:含功分器和定向耦合器,分离出入射,反射和传输信号;(3)接收机:对被测件的入射,反射和传输信号进行测试;(4)处理显示单元:对测试结果进行处理和显示。图12 VNA的原理框图 VNA的测量过程中会产生六大系统误差:(1)与信号泄露相关的方向误差;(2)与信号泄露相关的串扰误差; (3)与反射相关的源失配;(4)与反射相关的负载阻抗失配; (5)由测试接收机内部的反射引起的频率响应误差; (6)由测试接收机内部的传输跟踪引起的频率响应误差。 因此在使用前需要进行严格的校准。正确的校准是使用VNA的一个难点。 VNA测量出来的S参数是否有错误并不能通过VNA直接能检查出来,只有导入仿真软件仿真出结果发现有问题时可能会怀疑是S参数测量有问题,再返回来检查VNA校准VNA测量时的操作有没有错误。理论上来说,任何信号在时域和频域上是一一对应的,而且是可以相互转换的。这为基于阶跃响应的时域TDR/TDT方法测量S参数提供了可能。图13表示采用TDR/TDT方法测量S21,S12的原理。ST-20是采样示波器件的TDR模块,可以产生ps级的快沿并可作为20GHz带宽的采样头。假设Channe2为端口1,Channle3为端口2,Channel 1产生快沿信号作为入射波经过PCB走线后由Channel3接收该信号。入射的快沿信号和采样到的信号都可经过FFT变换分解成从一定频率范围的信号,经过计算得到频域的S参数。图13 基于TDR/TDT方法测量S参数其实在谈到VNA和TDR两种方法测量S参数的区别时,我们会自然联系到示波器的前端频率响应曲线的测量方法。 可以通过传统的扫频描点的方法(调节正弦波信号源的频率,然后分别测量不同频率时示波器测量到的峰峰值)来测量频响曲线,但也可以通过快沿信号输入到示波器,对采样到的快沿信号做FFT的方法来快速简便地测量频响曲线。 这两种方法测量示波器频响曲线的原理上的区别和测量S参数的两种方法的区别是一个道理。近些年来三个仪器厂商基于TDR原理测量S参数的实践证明了两种测量方法在频率不是特别高的时候符合度非常高,如图14所示为两种方法测量的S参数的结果对比。但基于TDR的方法存在有动态范围不太高的缺点。基于TDR测量S参数源于TDR的原理,但通过专利算法在提高动态范围上获得突破,而且在一键操作实现自动化校准方面的创新,具备时域分析能力和S参数文件可以直接被SI仿真软件调用等特点。图14 VNA和TDR方法测量的S参数一致性很好14 很很 数 方 点等 件仿被直文 参和分 备关创的化参现操键且些突理上范高算专但的于参量 。点太范有方 基。结数量方种 如常合候别不频量两证的 理 基器三来理个一区两参量区理原响示测两 曲量简快的 信快样器到号沿以但曲量来峰的波时同测分频号波调法点扫传可。量的应前器到然们别的参测两和 参参测 基 数数频算经号范频从换变经都到和沿快。该 线 过入号沿产 口 假采宽 为可的 产可 件示采 原 法/ 采 能供数 法 的响于为转以是的一上频时号说来。错有时量 校检回,量参疑怀可现结仿真入,来接 通不错数参量 点的 准确准格进前使 。率的踪的机试由 ;率的反部接由(;抗的关);源关与(差串关号与;向方泄信):统产中测 框框的 示和行果对单理 ;测输和射的被:)号输射入分合向分含装分(信入围频兴:号励(部下主,原 ) 理应阶快种, 理原扫基种有法的 法的数入分的 出差端表 如关之输的分端表 推义号其增差端到端示 。立是模表为 和 的很线如转模模分 转共差表限两 示头 以第参模的 象数式混的四包个阵参转间数模合参四端数参模合来 端端量此示图的转可间参合数参端 测测模混 应响么分模差信个模和信对根了述理意从参式混0,网端一解以就端个号分输是。样有别受口述矩参四单的四单的成两,分差是果事线根于的描行的种常。的输差络评数电式的出电 息电的有的匹共器于、提能矩、口端,(号等信在信差总分会的由现换向量、导等紧,面等长个性衡的 本单两是分构的不系网的,特。除声模种引运型减,的仿在,相即影线 传两噪入代,全无号,耦很之在,很频线输微果主传信系速为整统传 数模果真仿不的识识最一参绍多测 参式,特 方表参定数从文。都的象发产时则数 特欢合需一真整信。概果括的产原于语往 测譬实的用果因该话数的此,定么生一示的号器, 无宽。输激者是性谓 :) 宽 果·波 前 此,大对矩器频器离单而线使换截交件如 (互·大耗上义的 关几章数于很搜上 呢 什回一如。说越个于,功为数 软用直,人义义术作不的度量是个。度角位 以量,般数位相 幅 等滤、源器源、同是网传里的率是量最输和射的输量参:是中 , . , , ” “ 表 档用关篇 络端下高频 于在描来通:含 :洁更定文外。截不但的频在于主 图作准得可,比定。的达来散励信 ”有带器是参是含. “ - 是义文外 好不义个扭得差平语 的很研统信子、气数 为的励信稳变气线了 或数文成翻 - :义 于出出较参,糕性无一件有如数是参 堪。)(典会不件无教,因上络二无 来频以电曲 前计这小)理 候的用 ( 电%是量散出,版有于式 关下存 端对因阵 位阵 损一 于 源无式格 一呢本参理该底理念概是于关了确,合种懂懂义文过翻但达是英,内在文教” 压反和 射一为可示 关输输网方压反电用们它波的表 地:描的 著 数比,。:参合产接速 式的混要号过信对。个数时 在法外要但点 径参生产 水有管。于能证两的原这管件另,界的特会这遵参的 现) ? 一果) 水 易)个 管 源则另性参三,特管备要还数件仿部直。仿会接直都回 任数参于直实件 网端姆姆 电配示 。数用相度表 示如位中。角单 位值 里式表复示 行,实数 相频补行需的调被能,率即 有, 的到 ,一意值顺到从但规有隔中排上的由率列序 值 幅 位 率列共参 口 打用直件文是该实文 的口一图网口示 络 示 .口表名为 以件 路或一件用件真文的准真各被是文 文 数参大大量来,的随相恰 和。法种衰高性的输针就和加 越衰的缆 相号的率对。是含频器前示和这量的外传越量加增着特现呈益的作弦率不网示表和 数 和 图图 值 和示的图”“位幅表,的率标图 。物参理加更参参.含的 念本数参表征来用都因特出都输线走器,如源多,现会只不等输压反电为称理。模用非一成法种而特电描以度射一,一程”“的相电性出反量理测,量理可出“部电后散即“号入电以的的而工行下号高特频表述种数参述怎时的电”黑一阻将 量一是全信和一不的射而回反部信的过性射现会,电上去们不“高速号如 电压霍基习大们可就流出于输 流的其消热了量信所号流很率信: ?现生电流导当导的端电阻管我那 这解们 的射没水个流全水都水,流果但现现扰就的实概离一中波号的端一是含串远号到个另的相,施某表串近物串表 (串 , , (近 , 益传耗表 , 系射耗的各表 , 数 矩数网四示 图参的。匹接有其励加某似法量网和参络多口端系关络端 示 如些描图。数和、输口述整式个下住记比反 , 缀。类可其了 记们。结一向说般源,便上对向向淆易能时些)数益向下情端输表 率功率=/=数射端下情端输表 射功反/=意意数反口 示示,电接在信励施,数向 ) 损称常)益输前况匹端在 率/出 ) 损为被,反端况匹端在表 功射射 /意量测 口 阻配端在号激入,参向前。定下配全出入能参 到) 能部,反被 分,端到 量。示率波数参前二测。得如在的矩参解口端单幅的 系关值衰 表, 最算对般数参示当但单没格,的理两矩 阵数 就一数这值方 就络 个对,输 表。义符中淆就次住。测 端为 如一含的代序字字上端输络传示所如参阵参,件的式 一入的用仿个,一性了表参中在线程示纵频示个则上在意的一值数阵,阵是表学样式达参 方的参