欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    点到直线的距离公式.docx

    • 资源ID:29932576       资源大小:40.81KB        全文页数:11页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    点到直线的距离公式.docx

    精品文档,仅供学习与交流,如有侵权请联系网站删除§7向量应用举例71点到直线的距离公式72向量的应用举例学习目标1.了解直线法向量的概念.2.会用向量方法解决某些简单的平面几何问题、力学问题及一些实际问题.3.进一步体会向量是一种处理几何问题、物理问题等的工具知识链接1向量可以解决哪些常见的几何问题?答(1)解决直线平行、垂直、线段相等、三点共线、三线共点等位置关系(2)解决有关夹角、长度及参数的值等的计算或度量问题2用向量方法解决平面几何问题的“三步曲”是怎样的?答(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,距离,夹角等问题;(3)把运算结果“翻译”成几何关系预习导引1直线的法向量(1)直线ykxb的方向向量为(1,k),法向量为(k,1)(2)直线AxByC0(A2B20)的方向向量为(B,A),法向量为(A,B)2点到直线的距离公式设点M(x0,y0)为平面上任一定点,则点M到直线AxByC0(A2B20)的距离d.3向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:ab(b0)abx1y2x2y10.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,aba·b0x1x2y1y20.(3)求夹角问题,往往利用向量的夹角公式cos .(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|.4向量方法在物理中的应用(1)力、速度、加速度、位移都是向量(2)力、速度、加速度、位移的合成与分解就是向量的加、减运算,运动的叠加亦用到向量的合成(3)动量mv是数乘向量(4)功即是力F与所产生位移s的数量积要点一直线法向量(或方向向量)的应用例1已知ABC的三顶点A(0,4),B(4,0),C(6,2),点D、E、F分别为边BC、CA、AB的中点(1)求直线DE、EF、FD的方程;(2)求AB边上的高线CH所在的直线方程解(1)由已知得点D(1,1),E(3,1),F(2,2)设点M(x,y)是直线DE上任一点,则,(x1,y1),(2,2),(2)×(x1)(2)(y1)0,即xy20为直线DE的方程同理可求,直线EF、FD的方程分别为x5y80,xy0.(2)设点N(x,y)是CH所在的直线上任一点,则,·0,(x6,y2),(4,4),4(x6)4(y2)0,即xy40为所求直线CH所在的直线方程规律方法对于解析几何中的有关直线平行与垂直问题,常常可以转而考虑与直线相关的向量的共线与垂直,这样一来将形的问题转化为相关数的问题,从而容易将问题解决跟踪演练1求点P0(1,2)到直线l:2xy100的距离解方法一取直线l的一个法向量为n(2,1),在直线l上任取一点P(5,0),0(6,2),点到直线l的距离d就是0在法向量n上的射影设0与n的夹角为.d|0|cos |0|·2.故点P0到直线l的距离为2.方法二由点到直线的距离公式得d2.要点二向量在平面几何中的应用例2如图,已知RtOAB中,AOB90°,OA3,OB2,M在OB上,且OM1,N在OA上,且ON1,P为AM与BN的交点,求MPN.解设a,b,且,的夹角为,则b,a,又ba,ab,··5,|,|,cos ,又0,又MPN即为向量,的夹角,MPN.规律方法(1)本题可以选择,作为基向量,这是两个互相垂直的向量,选用这组特殊的基向量可以简化运算(2)本题也可以建立平面直角坐标系进行求解把平面几何中求角的问题转化为向量的夹角问题是平面向量的工具性体现之一,转化时一定要注意向量的方向跟踪演练2已知ABC中,BAC60°,AB4,AC3,求BC的长解以A为原点建立如图所示平面直角坐标系,则A(0,0),B(4cos 60°,4sin 60°),C(3,0),(3,0),(2,2),(1,2),|.要点三利用向量解决物理中的问题例3在风速为75() km/h的西风中,飞机以150 km/h的航速向西北方向飞行,求没有风时飞机的航速和航向解设向量a表示风速,b表示无风时飞机的航行速度,c表示有风时飞机的航行速度,则cab.如图,作向量a,b,c,则四边形OACB为平行四边形过C、B分别作OA的垂线,交AO的延长线于D、E点由已知,|75(),|150,COD45°.在RtCOD中,ODOCcos 45°75,CD75.又EDBCOA75(),OEODED75.又BECD75.在RtOEB中,OB150,sinBOE,|150,BOE30°.故没有风时飞机的航速为150 km/h,航向为西偏北30°.规律方法用向量的有关知识研究物理中有关力与速度等问题的基本思路和方法如下:(1)认真分析物理现象,深刻把握物理量之间的相互关系;(2)通过抽象、概括,把物理现象转化为与之相关的向量问题;(3)利用向量知识解决这个向量问题,并获得这个向量问题的解;(4)利用这个结果,对原物理现象作出解释跟踪演练3如图,在细绳O处用水平力F2缓慢拉起所受重力为G的物体,绳子与铅垂方向的夹角为,绳子所受到的拉力为F1.(1)求|F1|,|F2|随角的变化而变化的情况;(2)当|F1|2|G|时,求角的取值范围解(1)如图,由力的平衡及向量加法的平行四边形法则,得|F1|,|F2|G|tan .当从0°趋向于90°时,|F1|,|F2|都逐渐变大(2)由(1),得|F1|,由|F1|2|G|,得cos .又因为0°90°,所以0°60°.1已知直线l1:3xy20与直线l2:mxy10的夹角为45°,则实数m的值为_答案2或解析设直线l1,l2的法向量为n1,n2,则n1(3,1),n2(m,1)由题意cos 45°.整理得2m23m20,解得m2或m.2已知A(1,2),B(2,1),以AB为直径的圆的方程是_答案x2y2x3y0解析设P(x,y)为圆上任一点,则(x1,y2),(x2,y1),由·(x1)(x2)(y2)(y1)0,化简得x2y2x3y0.3正方形OABC的边长为1,点D、E分别为AB、BC的中点,试求cosDOE的值解以OA,OC所在直线为坐标轴建立直角坐标系,如图所示,由题意知:,故cosDOE.即cosDOE的值为.4一艘船从南岸出发,向北岸横渡根据测量,这一天水流速度为3 km/h,方向正东,风的方向为北偏西30°,受风力影响,静水中船的漂行速度为3 km/h,若要使该船由南向北沿垂直于河岸的方向以2 km/h的速度横渡,求船本身的速度大小及方向解如图,设水的速度为v1,风的速度为v2,v1v2a.易求得a的方向是北偏东30°,a的大小是3 km/h.设船的实际航行速度为v.方向由南向北,大小为2 km/h,船本身的速度为v3,则av3v,即v3va,数形结合知v3的方向是北偏西60°,大小是3 km/h.1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量;一种思路是建立坐标系,求出题目中涉及到的向量的坐标这两种思路都是通过向量的计算获得几何命题的证明2.用向量理论讨论物理中相关问题的步骤一般来说分为四步:(1)问题的转化,把物理问题转化成数学问题;(2)模型的建立,建立以向量为主体的数学模型;(3)参数的获取,求出数学模型的相关解;(4)得到答案,回到物理现象中,用已经获取的数值去解释一些物理现象一、基础达标1已知A,B,C,D四点坐标分别是(1,0),(4,3),(2,4),(0,2),则此四边形为()A梯形 B菱形C矩形 D正方形答案A解析(3,3),(2,2),|,四边形为梯形2当两人提起重量为|G|的旅行包时,夹角为,两人用力都为|F|,若|F|G|,则的值为()A30° B60°C90° D120°答案D解析作F1,F2,G,则,当|F1|F2|G|时,OAC为正三角形,AOC60°,从而AOB120°.3平面上有四个互异点A、B、C、D,已知(2)·()0,则ABC的形状是()A直角三角形 B等腰三角形C等腰直角三角形 D无法确定答案B解析由(2)·()0,得()()·()0,所以()·()0.所以|2|20,|,故ABC是等腰三角形4已知直线l1的方向向量为a(1,3),直线l2的方向向量为b(1,k),若直线l2过点(0,5),且l1l2,则直线l2的方程是()Ax3y50 Bx3y150Cx3y50 Dx3y150答案B解析l1l2,ab,a·b13k0,k,l2的方程为yx5,即x3y150.故选B.5过点A(2,1)且平行于向量a(3,1)的直线方程为_答案x3y50解析设P(x,y)是所求直线上的任一点,(x2,y1)a.(x2)×13(y1)0.即所求直线方程为x3y50.6已知点A(1,2),B(0,2),若点D在线段AB上,且2|3|,则点D的坐标为_答案解析由题意得(1,2)(1,4),所以D.7如图,点O是ABCD的对角线AC,BD的交点,E,F分别在边CD,AB上,且.求证:点E,O,F在同一直线上证明设a,b,由E,F分别为对应边的三等分点,得aa(ab)ab,(ab)aab.所以.又因为O为其公共点,所以点E,O,F在同一直线上二、能力提升8已知直线l1:(m2)x3my10与直线l2:(m2)x(m2)y30相互垂直,则实数m的值是()A2 B.C2或 D或2答案C解析(m2)(m2)3m(m2)(m2)(4m2)0.m2或.9在四边形ABCD中,(1,2),(4,2),则四边形的面积为()A. B2 C5 D10答案C解因为在四边形ABCD中,(1,2),(4,2),·0,所以四边形ABCD的对角线互相垂直,又|,|2,该四边形的面积:|·|××25.10已知曲线C:x,直线l:x6.若对于点A(m,0),存在C上的点P和l上的点Q使得0,则m的取值范围为_答案2,3解析由0知A是PQ的中点,设P(x,y),则Q(2mx,y),由题意2x0,2mx6,解得2m3.11如图所示,已知力F与水平方向的夹角为30°(斜向上),大小为50 N,一个质量为8 kg的木块受力F的作用在动摩擦因数0.02的水平平面上运动了20 m问力F和摩擦力f所做的功分别为多少?(g10 m/s2)解设木块的位移为s,则WF·s|F|·|s|cos 30°50×20×500(J)F在竖直方向上的分力的大小为|F1|F|·sin 30°50×25(N)则f(mg|F1|)0.02×(8×1025)1.1(N)所以f·s|f|·|s|cos 180°1.1×20×(1)22(J)即F与f所做的功分别是500 J与22 J.12在ABC中,ABAC,D为AB的中点,E为ACD的重心,F为ABC的外心,证明:EFCD.证明建立如图所示的平面直角坐标系设A(0,b),B(a,0),C(a,0),则D(,),(a,)易知ABC的外心F在y轴上,可设为(0,y)由|,得(yb)2a2y2,所以y,即F(0,)由重心坐标公式,得E(,),所以(,)所以·(a)×()×()0,所以,即EFCD.三、探究与创新13如图,在ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点求证:ARRTTC.证明设a,b,r,则ab.由于,所以设rn(ab),nR.又ab,故设mm.,rbm.所以n(ab)bm,即(nm)ab0.由于a与b不共线,故必有解得mn,同理,于是.ARRTTC.【精品文档】第 11 页

    注意事项

    本文(点到直线的距离公式.docx)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开