【同步备课参考】人教版八年级数学上册:13-1 轴对称 教学设计(3课时) (1).doc
第十三章轴对称13.1轴对称13.1.1轴对称第1课时【教学目标】知识与技能1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念、轴对称图形的概念.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.3.使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重难点】重点:理解轴对称的概念.难点:能够识别轴对称图形并找出它的对称轴.【教学过程】一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:如图13.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.5.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结得出:.像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、随堂练习课本60页练习.四、课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.五、课后作业课本64页习题13.1的第1、2题.第2课时【教学目标】知识与技能1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称的性质,线段垂直平分线的性质.难点:1.轴对称的性质.2.线段垂直平分线的性质.3.体验轴对称的特征.【教学过程】一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1.如图,ABC和A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C对称点,线段AA'、BB'、CC'与直线MN有什么关系?为什么?(学生思考并做小范围讨论)对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.探究1如图,木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,是L上的点,分别量一量点P1,P2,P3,到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在APC和BPC中,APCBPCPA=PB.证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.探究2如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.五、课后作业课本65页习题13.1的第3、4题.13.1.2线段的垂直平分线的性质【教学目标】知识与技能1.探索作出轴对称图形的对称轴的方法.掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准备地作出轴对称图形的对称轴吗?2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1:如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB如图(1).求作:线段AB的垂直平分线.作法:如图(2)(1)分别以点A、B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;(2)作直线CD.直线CD就是线段AB的垂直平分线.例2:图中的五角星有几条对称轴?作出这些对称轴.作法:1.找出五角星的一对对应点A和A',连接AA'.2.作出线段AA'的垂直平分线L.则L就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.三、随堂练习如图,与图形A成轴对称的是哪个图形?画出它们的对称轴.ABCD答案:与A成轴对称的是图形D(或B).四、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.五、课后作业课本65页习题13.1的第5、10、11、12题.6对 题 、0、 题习作作课轴对一图对这分垂线直连,对这点对任形对找的对条图一到据线直段作作了探小时)或形图轴成 轴对它?图是称 练练轴称条五,轴出可法轴称一角是 线平 段' ,和点一的法轴对这作称星的中线线垂段是 直点点于相弧作长 以圆 别 图线平垂 线如 吗直出你称成条关点) 线平垂线定才,的距端到找必那这直定由上平直条点相点两线定线分根分垂的新入线线直线如:.称的个到以分垂段它出,对线分的连称一任轴对对线分段连对一轴对称线条关两.形吗称的称出准能你折呢何,轴是个我新引问程过法法对称索法作对称点重识意增题的些决知应心和勇服强,的与数值与力的理进说一,的形纳索并验过的决知运灵惯的学成步能情生,过等纳、作方力力、分培中的探法作对图轴法的的形出技标目性的直的线 题 题页作作题决来这运们同质线直垂线程的形称探小时吗分垂 线 直 ,=练练合的所相离端是以分平线.线垂的的相端段这,;离点两条这上平段即的线段出果题探述上分垂段条点离端两论么为直棒向出能么去孔中通”的一做的均一棒用 题问下我的的等是此, 段,线 将中 线质性轴利 中 和 在等全三判:现现什离与到 一分,是 起 ,图质的分段探线平的线称对任对的轴,.直段线称何任对称直条图质的对段线直并中线点对直在系的线对轴对点两找形轴个线线垂线叫线段于且点过们.线垂并中连点经直论围做考(什为什 与 '、 点对 是''',称 关' 新入论到中图,有图呢图对是样新引情程程征征轴质性平直质称点质的平段质的点难识意增题实些解知应心心的服增系的与数值价力的单进理进方推形归探并验过问有识活惯的推数,理情生发中等纳、方质质平垂质性图对,性轴图解技标标学课题、的 习 作后称对形和称轴,特对探进概关图了,图了要主小小课习习练堂点对做对点重,称叫直对条关图说那合个另它,叠一着形,像出么什现想想论讨分吗们找能习合全形侧折叠直一图特图轴了一们结吗案称成个,铺纸将一意中的小并将的较一作称对(直于个也们对它直,图轴就这重互能两,线沿个果吗特的什们你花丽剪,折这,剪完痕折个出纸一, 如子的称对一物的生生子的到可人品生甚作术建构分景从在处对征同什都它,示(幅察新入吧吧索界称走们让一中称对谐与美自们以可征形一助帮仅的握初感的带给称称中和重对说新新境程过轴对出形图轴念概对理点重点义唯辩于服反践来成步生识用增题的单解学应心和的服增系生实数值价力的单进理步方的性归探掌,过问有知活惯习学成步理合学,程探、察方念的称轴概对,图析图对认实技标目学课对轴.对轴