欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高一数学必修3概率.doc

    • 资源ID:29941060       资源大小:446.50KB        全文页数:26页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高一数学必修3概率.doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高一数学必修3概率第一章概率必然事件: 不可能事件: 随机事件:练:判断下列事件哪些是必然事件,哪些是不肯能事件,哪些是随机事件?(1)掷一枚骰子两次,所得点数之和大于12. (2)如果,那么; (3)掷一枚硬币,出现正面向上;(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签; (5)某电话机在1分钟内接到2次呼叫;(6)没有水分,种子能发芽.1,概率概念:思考:(1)抛掷一枚质量均匀的硬币20次,字面向上的频率和概率是试验前知道还是试验后知道?(2)如何用频率来研究事件发生的概率?(3)如果随机事件A在n次试验中发生了m次,则事件A的概率一定是?随机事件的频率:随机事件的概率:概率与频率的区别与联系:例1:抛掷10次硬币,是否一定是5次“正面朝上”和5次“5次反面朝上”?例2:有四个阉,其中两个分别代表两件奖品,四个人按排序依次抓阉来决定这两件奖品的归属.先抓的人中奖率一定大吗?例3:一次抽奖活动中,中奖的概率为0.3,解释该概率的含义;例4为了增强学生对世园会的了解和认识,某校决定在全校3000名学生中随机抽取10名学生举行一次考核,小明认为被选取的可能性为,不可能抽到他,所以他就不做备考,他的想法对吗?为什么?2,对立、互斥事件:对立事件: 互斥事件:问题1:互斥事件与对立事件有何异同?问题2:对于任意两个事件A,B,P(AB)=P(B)+P(B)是否一定成立?例1某公司部门有男职工4名,女职工3名,由于工作需要,需从中任选3名职工出国洽谈业务,判断下列每对事件是否为互斥事件,是否为对立事件:(1)至少1名女职工与全是男职工; (2)至少1名女职工与至少1名男职工; (3)恰有1名女职工与恰有1名男职工;(4)至多1名女职工与至多1名男职工。 例2判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由。 从40张扑克牌(红桃、黑桃、方块、梅花点数从110各10张)中,任取一张。(1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。例3、某战士在一次射击训练中,击中环数大于6的概率为0.6,击中环数是6或7或8的概率为0.3,则该战士击中环数大于5的概率为0.6+0.3=0.9,对吗?3,古典概型:正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=基本事件:试验的 称为基本事件。例1下列试验是否属于古典概型?(1)一个盒子中有三个除颜色外完全相同的球,其中红球、黄球、黑球各一个,从中任取一球; (2)向一个圆内随机地投一个点,该点落在圆内任意一点都是等可能的。练:判断下列两个试验是否是古典概型? (1)在线段0,2上任取一点,求此点的坐标小于1的概率; (2)从1,2,3,4,5,6六个数中任取一个数,求此数是2的倍数的概率。例2用红、黄、蓝三种不同颜色给如图所示的3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率; (2)3个矩形颜色都不同的概率。 练:从分别写有A、B、C、D、E的5张卡片中任取2张,所有基本事件有哪些?这2张上的字母恰好按字母顺序相邻的概率是多少?例3一个口袋中有形状、大小都相同的6个小球,其中有2个白球、2个红球和2个黄球。从中一次随机摸出2个球,试求:(1)2个球都是红球的概率;(2)2个球同色的概率;(3)“恰有1个球是白球的概率”是“2个球都是白球的概率”的多少倍?例4先后抛掷一枚骰子两次,将得到的点数分别记为a,b。(1)求a+b=4的概率;(2) 求a+b>5的概率。 (3) 将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。(4) 求点(a,b)在函数图像上的概率;例5.从19中选三个数(不重复)排成一个三位数,则:(1) 所得数大于500的概率;(2) 所得数为偶数的概率;(3) 若选数字时可重复,则大于500的概率多大?例6.四人排队,甲乙挨着的概率有多大?练:1,任意抛掷两枚骰子,计算:(1) 出现点数相同的概率;(2) 出现点数之和为奇数的概率;(3) 出现点数只和为偶数的概率。(4) 点数之和大于八的概率。 2,袋中有黑球3个,白球两个,求:(1) 随便抓一个,抓到黑球的概率;(2) 不放回抓两次,至少抓到一个黑球的概率;(3) 放回抓三次,至少抓到一个白球的概率。3,一个各面都涂色的立方体木块,横两刀竖两刀前后两刀切为27块,求:(1) 任意抓一块,恰为两面涂色的概率;(2) 任意抓两块,染色面数相等的概率;(3) 任意抓两块,被染色面数和为偶的概率。 4.几何概型:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等2在几何概型中,如果A为随机事件,若P(A) = 0,则A一定为不可能事件吗?几何概型例题:例1, 已知则的概率有多大?例2, 在相距3m的两杆之间扯上一铁丝,小明洗完衣服后,将衣服挂在铁丝上晾晒,则所挂衣服与两杆的距离都不小于1m的概率有多大?例3, 已知一个正方形内有一个内接圆,一点随即落入正方形内,则落入圆中的概率有多大?例4, 已知一个半径为10的圆盒内投入一枚直径为2的硬币,则硬币与盒边缘距离超过1的概率有多大?例5, 已知一人起床时发现钟表停了,而广播会整点报时,则此人等报时不超过10分钟的概率有多大?例6, 已知某人早上7:008:00离开家,而报童送报时间为6:307:30,则此人早上离家前收到报纸的概率有多大?例7, 两人约会,规定3:004:00见面,男生若先到,等女生20分钟不到就离开;女生若先到,则等男生15分钟仍不到就离开。两人只在规定时间出现在约定场合,则能见面的概率有多大?检测卡1已知随机事件A发生的频率是0.02,事件A出现了10次,那么可能共进行了 次试验.2.箱内有黑白两球,甲乙先后有放回地抽一次球,则抽到相同颜色球的概率有多大?3. 某公司休假规定为每人每周有两天休假,某员工某一周周六休假的概率有多大?4袋中有红、黄、白3种颜色的球各一只,每次从中任取1只,有放回的抽取3次,求:(1)3只球颜色全相同的概率;(2)3只球颜色不全相同的概率。 5、柜子里装有3双不同的鞋,随机地取出2只,试求下列事件的概率(1)取出的鞋子都是左脚的;(2)取出的鞋子都是同一只脚的变式:(1)取出的鞋一只是左脚的,一只是右脚的;(2)取出的鞋不成对6,从16中选三个数得到一个三位数,则计算下列事件概率:(1) 所得三位数大于400;(2) 所得三位数为偶数。作业卡1 某射手射击一次,射中10环、9环、8环、7环的概率分别是0.24、0.28、0.19、0.16。计算射击一次,射中8环(不含)以上的概率;2.一盒中装有各色球12个,其中5个红球、,4个黑球、2个白球、1个绿球。从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)有放回地取两次,至少一次取出红球或黑球的概率。 3.取一根长为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率有多大?4,5个人(包含甲乙两人)排队,甲乙两人挨着的概率有多大?*5.在区间-1,1上任取两个数,则 (1)求这两个数的平方和不大于1的概率; (2)求这两个数的差的绝对值不大于1的概率。-

    注意事项

    本文(高一数学必修3概率.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开