基 PLC酸奶灌装生产流水线的控制系统设计毕业设计(论文).docx
摘 要 毕 业 论 文 论文题目 基 PLC酸奶灌装生产流水线的控制系统设计 学生姓名 学 号 128041162 专 业 电气工程及其自动化 班 级 机械及自动化1班 指导教师 2015年4月21日摘 要本文主要介绍的是基于三菱FX1N-40MR可编程控制器(PLC)的饮料灌装生产流水线的控制系统的设计。该系统的设计包括硬件设计和软件设计。其中硬件设计包括三菱FX1N-40MR PLC外部电路的设计与安装;软件部分包括程序的设计与调试。所设计系统最终能够实现以下功能:(1)能对空瓶进行运送、灌装,灌装量可根据空瓶大小设定;(2)对满瓶进行运送及计数,计数值包括累计计数、单位包装计数,单位包装计数量可根据包装大小设定;(3)能够实现手动复位。该系统主要运用了三菱PLC、传感器、继电器、行程开关等器件,利用PLC良好的自动控制性能,实现饮料罐装生产过程的无人控制。a) 关 键 词:PLC;饮料灌装;生产流水线29ABSTRACTThis paper mainly introduces the control system of beverage filling production line based on Mitsubishi FX1N-40MR PLC.The system design consists of hardware and software design. The hardware design includes Mitsubishi FX1N-40MR PLCs external circuit design and installation; software design includes the design and debugging of program. The system can achieve the following functions: (1) The bottles can be transported and filled and the filling volume can be set according to the size of bottles; (2) the full bottles can be transported and counted, the count includes total count and the count of unit package and the total number of unit packaging can be set according to package size; (3) the system can achieve manually reset. The system mainly uses the Mitsubishi PLC, sensors, relays, switches and so on and uses the good automatic control performance of PLC to achieve the no control of beverage filling production line .KEY WORDS: PLC; Beverage filling; Production line目 录目 录1 绪论11.1 课题研究背景11.2 课题研究内容12 饮料罐装生产流水线总体方案设计32.1 任务的分析32.2 硬件方案设计32.3 软件方案设计32.3.1 经验设计法42.3.2 逻辑设计法43 系统元件的选择53.1 PLC的选型53.2 电动机的选型53.3 接触器的选型63.4 热继电器的选型63.5 开关电器、熔断器的选型63.6 传感器的选型64 系统的硬件电路实现94.1 系统硬件结构框图94.2 主电路的设计94.3 控制电路的设计104.4 操作面板的设计105 系统程序的设计135.1 控制要求和控制过程分析135.2 I/O端口分配135.3 梯形图155.3.1 初始化程序155.3.2 装箱选择程序155.3.3 流水线主控程序165.3.4 闪烁报警程序185.3.5 记数程序185.3.6 数据传送程序196 程序调试216.1 装箱选择程序的仿真216.2 主控制程序的仿真216.3 闪烁报警程序的仿真246.4 记数程序的仿真247 结论与展望25致 谢26参考文献27附 录28即可):Equation Chapter 1 Section 11 绪论1.1课题研究背景我国的饮料灌装自动化相对于西方发达国家来讲还有很大的差距。设备陈旧,技术落后,成为阻碍我们灌装行业发展的一个严重问题。鉴于这些问题,我国企业不断发展自身的实力,逐步朝着生产高速化、设备结构合理化、设备的多功能化、设备的绿色化、控制的智能化等方向发展。PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 随着工业自动化水平日益提高,众多工业企业均面临着传统生产线的改造和重新设计问题。PLC是以微处理器为核心的工业控制装置,它将传统的继电器控制系统与计算机技术结合在一起,近年来在工业自动控制、机电一体化、改造传统产业等方面得到普遍应用。作为通用工业控制计算机,其实现了工业控制领域接线逻辑到存储逻辑的飞跃,在世界工业控制中发挥着越来越重要的作用.几年前,自动化技术只占包装机械设计的30%,现在已占50%以上,大量使用了微电脑设计和机电一体化控制。提高包装机械自动化程度的目的:一是为了提高生产率;二是为了提高设备的柔性和灵活性;三是为了提高包装机械完成复杂动作的能力。 饮料灌装机用于灌装各种各样的瓶装饮料,适合大中型饮料生产厂家,早期的灌装机械大多数采用容积泵式、蠕动泵式作为计量方法。这些方法存在一些缺点。例如:灌装精度和稳定性难以保证、更换灌装规格困难等。本系统采用的饮料分装计量是通过时间和单位时间流量来确定的,计量精度由PLC控制确定。PLC控制具有编程简单、工作可靠、使用方便等特点,在工业自动化控制领域广泛应用。专为PLC应用而实际的触摸屏集主机、输入和输出设备于一体,适合在恶略的工业环境中使用. 饮料灌装装置主要包括两部分:恒压储液罐灌液和计数部分。在恒压储液罐灌液不封,里面有上限液位和下线液位传感器,它们淹没时是1状态。液面低于下线液位时恒压储液罐为空。饮料通过进液电磁阀流入恒压储液罐,液面达到上限位时进液电磁阀断电关闭,使液位保持恒定。 鉴于PLC可靠性高、耐恶劣环境能力强、使用极为方便三大特点,利用PLC技术平台自主开发创新,将机械、电气和自动化等技术有机结合,将传统的继电器-接触器控制功能用PLC代替,构成实用、可靠的饮料灌装生产线PLC控制系统。该控制系统可节省大量电气元件、导线与原材料,缩短设计周期,减少维修工作量, 提高加工零件合格率,进而提高生产率,而且程序调整修改方便灵活,提高了设备的柔性和灵活性。具有整体技术经济效益。随着工业自动化水平日益提高,众多工业企业均面临着传统生产线的改造和重新设计问题。目前,饮料的灌装伸长已经实现自动化,为了提高产品质量,缩短生产周期,适应产品迅速更新换代的要求,产品生产正向缩短生产周期、降低成本、提高生产质量等方面发展。因此,饮料厂的自动化灌装生产线中有越来越多的及其在使用先进的灌装技术来提高及其的自动化电气控制水平和生产效率。PLC是以微处理器为核心的工业控制装置,它将传统的继电器控制系统与计算机技术结合在一起,近年来在工业自动控制、机电一体化、改造传统产业等方面得到普遍应用。作为通用工业控制计算机,其实现了工业控制领域接线逻辑到存储逻辑的飞跃,在世界工业控制中发挥着越来越重要的作用。鉴于此,设计者利用PLC的功能和特点设计出了一款饮料灌装生产流水线控制系统 目前饮料灌装生产线的控制过程主要是继电器接触控制,但这种电路接线复杂,可靠性低,使得工业生产的效率得不到提高3-4。不过,随着时代的发展,饮料灌装生产线的控制过程正朝着智能化和自动化的方向发展。PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。用户在购到所需的PLC后,只需按说明书的提示,做少量的接线和简易的用户程序编制工作,就可灵活方便地将PLC应用于生产实践5-12。1.2课题研究内容本课题对饮料罐装生产流水线的硬件和软件进行了设计。其中硬件设计包括三菱FX1N-40MR PLC外部电路的设计与安装;软件部分包括程序的设计与调试。根据系统的要求对PLC、电动机、传感器等外部设备进行选型。设计好的饮料灌装生产流水线能够实现以下目的:(1)系统通过开关设定为自动操作模式,一旦启动,则传送带的驱动电机启动并一直保持到停止开关动作或待灌装的饮料瓶被传送至灌装设备下时停止;瓶子装满饮料并上盖后,传送带驱动电机必须自动启动,并保持到下一个待灌装的饮料瓶被传送至灌装设备下或停止开关动作;(2)当瓶子定位在灌装设备下时,停顿1s,灌装设备开始工作,对于大瓶灌装8秒钟,小瓶则灌装5秒钟,待灌装过程完毕再对饮料瓶进行上盖,上盖时间为2秒钟。整个灌装和上盖过程应有报警显示,待上盖完毕后不再显示报警;报警方式为红灯以0.5s间隔闪烁;(3)包装上,对于小瓶:40瓶为一大包,30瓶为一中包,20瓶为一小包;对于大瓶:20瓶为一大包,15瓶为一中包10瓶为一小包;(4)能够实现对生产产品进行自动记数并可以手动对计数器清零。Equation Chapter (Next) Section 12 饮料罐装生产流水线总体方案设计2.1任务的分析本次设计的任务是以三菱FX1N系列PLC作为处理核心,用行程开关、传感器将生产过程中的信号(如空瓶的运行的位置、饮料瓶的大小等等)处理后送给PLC处理器,由PLC对数据进行运算,然后输出驱动信号(如接触器、电磁阀等等)来完成饮料罐装生产过程的流水线操作。该系统的总体思路:此生产线为全自动控制的,生产线一旦上电,PLC将通过软件对生产线进行自动控制:通过输出继电器控制传送带的停转和对饮料瓶灌装的控制,实现对系统状态的显示,并且通过PLC内部的计数器对所生产的产品进行计数。2.2硬件方案设计饮料的灌装是采用了饮料灌装机,饮料灌装机将灌装装置以及封盖装置集合在一起,使饮料的灌装稳定、高效的完成。对于饮料瓶大小的区别是通过反射式光电传感器工作来实现的。利用辅助继电器对计数器进行正电平触发来实现对所生产产品的计数。生产流水线结构如图2-1所示。系统的工作原理:系统一旦上电,传送带驱动电动机运转,待空饮料瓶行至行程开关,行程开关闭合,电动机停转,灌装设备通过阀门的关断来控制饮料灌装的时间,待饮料灌装过程完毕后电动机恢复转动,如此循环实现生产线上的自动控制。对于传送带上的饮料瓶大小的区分,是通过下图中所在位置的反射式光电传感器工作来实现的。图2-1生产流水线结构图2.3软件方案设计PLC软件方案设计的方法有经验设计法,逻辑设计法等。1.1.1 2.3.1经验设计法梯形图的经验设计法是比较广泛的一种方法。这种方法没有普遍的规律可以遵循,具有很大的试探性很随意性,最后的结果不是唯一的。该方法的核心是输出线圈。以下是经验设计方法的基本步骤:1.了解和熟悉被控设备的工艺过程和机械的动作情况。2.确定PLC的输入信号和输出负载,画出PLC的外部接线图。3.确定与继电器电路图的中间继电器,时间继电器对应的梯形图中的辅助继电器(M)和定时器(T)的元件号。4.根据前面的对应关系画出梯形图。1.1.2 2.3.2逻辑设计法逻辑设计法的理论基础是逻辑代数。而继电器控制系统的本质是逻辑线路。看一个电气控制线路都会发现,线路的接通和断开,都是通过继电器等元件的触点来实现的,故控制线路的种种功能必定取决于这些触点的开,合两种状态。因此电气控制电路从本质上说是一种逻辑线路,它符合逻辑运算的基本规律。具体步骤如下图3-1所示:图2-2PLC逻辑设计步骤图Equation Chapter (Next) Section 13系统元件的选择3.1PLC的选型根据饮料罐装自动生产线的工艺流程图,PLC控制系统的输人信号有9个,且均为开关量。PLC控制系统的输出信号有10个。FX1N系列的PLC只有继电器输出方式和晶体管输出方式两种, 继电器输出方式其特点是:可使用交直流电源,其动作慢,但安全隔离效果好,可靠性高;晶体管输出方式其特点是:只能使用直流电源,其响应速度最快场效应管输出模块的工作频率可达20kHz,但过载能力较差。综合以上信息,并结合经济实用性的考虑,控制系统选用FX1N-40MR型号的PLC:继电器输出,输人点数输出点数均为16点,可以满足工艺要求,且留有一定的余量。便于以后的修改和扩展。根据系统的性能与要求,PLC输入/输出端口地址的分配如表3-1所示。表3-1 PLC I/O端地址编号对照表输入信号输出信号名称功能编号名称功能编号SB0启动按钮X0KM1传送带电动机Y0SB1停止按钮X1YV1灌装电磁阀Y1ST0行程开关X2YV2小瓶封盖Y2S0光电传感器X3YV3大瓶封盖Y3SB4大包X4HL4大包Y4SB5中包X5HL5中包Y5SB6小包X6HL6小包Y6SB7散装X7HL7散装Y7SB10手动复位X10HL10系统上电显示Y10HL11灌装过程显示Y113.2电动机的选型目前市面上的电动机类型多种多样,用于驱动传送带传送的电动机的类型也数不胜数13-14。基于该系统的控制要求与各类型电动机的结构特点和工作场合,并考虑到经济性和实用性,本系统选择的电动机型号为Y132M-4,其性能参数如表3-2所示。表3-2 Y132M-4型电动机的性能参数电流电压最大转矩额定转速极数频率额定功率15.4 A380V2.3 n.m1440 r/min450 Hz7.5KW3.3接触器的选型接触器是一种用来接通或断开带负载的交直流主电路或大容量控制电路的自动化切换器,主要控制对象是电动机。通用接触器可大致分以下两类。 1)交流接触器。主要有电磁机构、触头系统、灭弧装置等组成。常用的是CJ1、0CJ12、CJ12B等系列。2)直流接触器,一般用于控制直流电器设备,线圈中通以直流电,直流接触器的动作原理和结构基本上与交流接触器是相同的。接触器的选型有诸多因素外与负载密切相关一般三相异步电机的起动电流为额定电流的3-5倍。所以接触器的额定电流为: IN=36A (3-1)综上所述,本系统选用CJ10-40接触器:额定电流为40A,额定电压为380V。3.4热继电器的选型热继电器由两部分组成,每一部分安装的位置不同。一部分是主触点,接在电动机与接触器KM之间。另一部分是接在控制电路中,与接触器KM的线圈电路相串联。热继电器在控制线路中起过载保护的功能。热继电器是采用双金属热元件,动作机构,常闭触头和常开触头,复位按钮及整定电流调节旋钮等构成。根据双金属热元件的数目可分为两极和三极型热器,而三极型又分带断相保护和不带断相保护两种。主电动机M1的额定电流15A,FR1可以选用JR16,热元件电流为20A,电流整定范围为14-22A工作时将额定电流调整为15A。3.5开关电器、熔断器的选型行程开关是一种由物体的位移来决定电路通断的开关,选用型号为LXK2-131型。熔断器选用RL1-15型熔点器,熔体的额定电流为30A。3.6传感器的选型系统中运用传感器对饮料瓶的大小进行区别,根据设计需要选择反射式光电传感器15。反射式光电传感器的工作原理如图3-1所示。图3-1反射式光电传感器原理图该系统选择的反射式光电传感器型号为PM2-LF10,其性能参数如表3-3所示。表3-3 PM2-LF10反射式光电传感器的性能参数性能参数检测距离2.58mm(中心:5mm)白色无光泽纸(15×15mm)最小检测物体 0.05mm铜线(设定距离:5mm)应差使用白色无光泽纸(15×15mm)工作距离的20%以下重复精度(垂直于检测轴)0.08mm以下电源电压524V DC±10% 脉动P-P5%以下消耗电流平均:25mA以下,峰值:80mA以下输出NPN开路集电极晶体管·最大流入电流:100mA·外加电压:30V DC以下(输出和0V之间)·剩余电压:1V以下(流入电流为100mA时)0.4V以下(流入电流为16mA时)短路保护装备反应时间0.8ms以下Equation Chapter (Next) Section 14系统的硬件电路实现4.1系统硬件结构框图系统的硬件分为主电路、控制电路、辅助电路三大部分,控制电路控制主电路,辅助电电路起辅助信号显示的作用,它们之间的关系如图4-1所示:图4-1硬件电路关系图4.2主电路的设计传送带用电动机M1来运行,并用接触器KM1来控制电动机的运行与停止。由热继电器FR1实现过载保护。断路器QF1、QF2、QF3将三相电源引入,同时QF1、QF2、QF3为电路提供短路保护。饮料罐装生产的主控制电路如图4-2所示。图4-2主控制电路图4.3控制电路的设计PLC控制系统的输人信号有9个,且均为开关量。其中各种单操作按钮开关6个,分别 SB0 启动按钮、SB1 停止按钮、SB4 大包、SB5 中包、SB6 小包、SB7 散装、SB10 手动复位按钮。行程开关1个,传感器开关1个。PLC控制系统的输出信号有10个,其中1个用于驱动传送带电动机的接触器KM1, 3个电磁阀分别用于大瓶和小瓶的封盖及饮料罐装,6个用于生产线上的状态显示。如图4-3所示。图4-3三菱PLC外部接线图4.4操作面板的设计操作面板本着操作简单,直观明了的,对饮料罐装自动生产线的每一步都能准确显示,方便工作人员的工作为原则而设计。如图4-4所示。面板中的按钮有停止、启动和手动复位按钮,以及选择大包、中包、小包和散装的按钮。显示灯有大包、中包、小包和散装的显示灯,还有上电显示和灌装过程显示。本系统还设置了两种灌装模式即大瓶、小瓶灌装,四种包装方式即大瓶的大、中、小包装和散装及小瓶的大、中、小包装和散装 。这样做有利于不同层次的需要。图4-4操作面板外形图5系统程序的设计5.1控制要求和控制过程分析系统通过开关设定为自动操作模式,一旦启动,则传送带的驱动电机启动并一直保持到停止开关动作或灌装设备下的传感器检测到一个瓶子时停止;瓶子装满饮料后,传送带驱动电机必须自动启动,并保持到又检测到一个瓶子或停止开关动作。当瓶子定位在灌装设备下时,停顿1s,灌装设备开始工作,灌装过程为小瓶装5s钟,大瓶装8S钟,然后均上盖时间为2秒,灌装和上盖过程应有报警显示,上盖过程停止并不再显示报警;报警方式为红灯以0.5s间隔闪烁。与此同时对生产的饮料进行打包并计数,对于小瓶:40瓶为一大包,30瓶为一中包,20瓶为一小包;对于大瓶:20瓶为一大包,15瓶为一中包,10瓶为一小包。在生产过程中可以对各计数器手动清零,系统每8小时将所记数据送入指定的存储器中,然后将记数器清零。在电动机运转时按下停止按钮,系统会马上停止工作:而在系统进行灌装和加盖时按下停止按钮,系统不会马上停止工作,而要待加盖工作完成后,系统最终停止工作。系统过程流程图和顺序功能图分别如下图5-1和图5-2所示。5.2I/O端口分配X0:启动 Y0:驱动电动机转动X1:停止 Y1:灌装饮料X2:行程开关 Y2:小瓶上盖X3:传感器 Y3:大瓶上盖X4:选择大包包装 Y4:显示大包包装X5:选择中包包装 Y5:显示中包包装X6:选择小包包装 Y6:显示小包包装X7:选择散装 Y7:显示散装X10:手动复位 Y10:系统上电显示Y11:灌装和上盖过程显示图5-1过程流程图图5-2顺序功能图5.3梯形图1.1.3 5.3.1初始化程序初始化,启动时、按下复位钮和8小时将程序中用到的计数器置零1.1.4 5.3.2装箱选择程序对生产好的饮料进行装箱选择:X4 X5 X6 X7所对应的按钮SB4 SB5 SB6 SB7分别用于选择包装的类型:大包 中包 小包 散装。1.1.5 5.3.3流水线主控程序生产流水线主控电路的自动控制:系统通过开关设定为自动操作模式,一旦启动,则传送带的驱动电机启动并一直保持到停止开关动作或灌装设备下的传感器检测到一个瓶子时停止;瓶子装满饮料并上盖后,传送带驱动电机必须自动启动,并保持到又检测到一个瓶子或停止开关动作;当瓶子定位在灌装设备下时,停顿1s,灌装设备开始工作,对于大瓶灌装8秒钟,小瓶则灌装5秒钟,待灌装过程完毕再对饮料瓶进行上盖,上盖时间为2秒钟。当系统正在运行装罐时,按下停止按钮,系统并不会马上停止运行,待上盖工作结束后,系统最终停止运转。1.1.6 5.3.4闪烁报警程序罐装和上盖过程中闪烁报警1.1.7 5.3.5记数程序对于小瓶:40瓶为一大包,30瓶为一中包,20瓶为一小包;对于大瓶:20瓶为一大包,15瓶为一中包10瓶为一小包。并且对所装箱和所生产饮料的数量进行计数。1.1.8 5.3.6数据传送程序设定8小时传输一次数据,将各记数器中所记数据存储到指定的存储器中。 6 程序调试利用软件三菱PLC编程软件GX Developer8.86进行仿真运行调试。6.1装箱选择程序的仿真X4 X5 X6 X7分别对应大包 中包 小包和散装的按钮,选择不同的按钮按下,在控制面板上会显示出相应的包装。6.2主控制程序的仿真X0(对应启动按钮)上电后Y0(对应继电器线圈)上电并自锁,传送带运行,待写X2(对应行程开关)上电后,Y0失电,传送带停止,Y1(对应灌装电磁阀)上电,加饮料5秒钟后,Y1失电,停止加料,Y2(对应上盖装置)上电,上盖时间为2秒。在传送带运转时,X2X3(对应光电传感器)同时上电,表示检测到大瓶,此后灌装加料过程为8秒。在传送带运转时,按下停止按钮(即X1上电)系统马上停止工作。在灌装加料和上盖时按下停止按钮,系统不会马上停止工作,而是待灌装和上盖工作结束后,最终停止运转。6.3闪烁报警程序的仿真系统灌装加料(Y1上电)和上盖(Y2上电)时,发光二极管报警器(Y11)会闪烁报警。6.4记数程序的仿真对于小瓶,每大包可装40瓶,并且最后对所装包数进行记数。Equation Chapter (Next) Section 17结论与展望本文介绍了基于三菱FX1N-40MR PLC的饮料灌装生产流水线的控制系统的设计。该系统的设计包括硬件设计和软件设计。硬件设计方面,根据系统的控制要求对各硬件设备进行了选型并对三菱FX1N-40MR PLC外部电路接线进行了设计;软件设计方面对软件设计的方法进行了概述,根据要求设计出梯形图并对它进行仿真调试。仿真调试后的控制系统基本上满足以下控制要求:(1)能对空瓶进行运送、灌装,灌装量可根据空瓶大小设定;(2)对满瓶进行运送及计数,计数值包括累计计数、单位包装计数,单位包装计数量可根据包装大小设定;(3)能够实现手动复位。利用PLC良好的自动控制性能,本文所设计的饮料灌装生产流水线的控制系统基本上实现了饮料罐装生产过程的无人控制。但对于大型的生产流水线来说,该系统就无法满足其更加复杂、准确、智能的控制要求。该系统需要在传送速率,次品检测等诸多方面作出改进。 基于PLC的饮料灌装生产流水线的控制系统为饮料罐装生产提供了极大地便利,在各种饮料罐装生产行业迅猛发展。随着生产社会化水平的不断提高,基于PLC的饮料灌装生产流水线的控制系统不仅仅局限于饮料罐装生产行业,它在现代的芯片封装,产品包装等流水线作业生产方面也有着相当广阔的前景。致 谢致 谢首先感谢宁夏大学新华学院四年来对我的精心培养,这四年是我的一段比较快乐的时光,也是人生中一段宝贵的经历。在本次课题设计中,指导教师丁莉君老师对我的帮助很大,虽然这段时间我的毕业设计进程“停滞不前”可老师没有将我放弃,一直不厌其烦的督促我,还不时地指导我,这让我很感动。老师对我的悉心帮助为我打下坚实的理论基础知识,提高个人能力都非常有益,在此我对丁老师表示忠心的感谢和崇高的敬意。附 录参考文献1 孔凡真.饮料无菌冷灌装生产线的应用是大势所趋J.饮料工业,2007,10(12)2 刘军.国外饮料灌装机现状为我国灌装机指明发展方向J. 中国包装工业,20099(10)3 袁任光.可编程序控制器(PLC)应用技术与实列M.华南理工大学出版社,2001:8-10.4 柯龙瑞.饮料灌装线设计应考虑的若干因素M.轻工机械出版社 20005 杨旭东、王天杰、刘海生. PLC在饮料灌装机控制系统中的应用J, 机床与液压2005:7-1526 武少斌、殷际英、陈卫.自动化生产线中的饮料灌装技术J.中国科技博览,2006(15)7 陈昌伟、胡国清、张冬至.灌装阀及旋盖头测试实验装置设计J.包装工程 ,2009(3)8 黄睿峰饮料生产线的自动加盏器J.燃气器轮试验与研究成都1994,No4P89 辛蓦洪饮料生产设备的使用与维护M.机槭工业出版社10 廖初常.FX系列PLC编程及应用 M.机械工业出版社,2005:15-19. 11 王兆义可编程控制器教程M.北京:机械工业出版社,2005.12 阮友德.电气控制与PLC实训教程M.人民邮电出版社,200513 汪国梁.电机学M北京机械工业出版社,200714 顾绳谷.电机及拖动基础M. 北京:机械工业出版社,2007.15 陈杰、黄洪.传感器与检测技术M高等教育出版社,2008附 录指令表: