等差数列的前n项和性质及应用ppt课件.ppt
等差数列的前等差数列的前n n项和公式项和公式: :11)2nn nSnad-=+(形式形式1:1:形式形式2:2:复习回顾复习回顾1+)2nnn aaSd=( 1. 1.将等差数列前将等差数列前n n项和公式项和公式 看作是一个关于看作是一个关于n n的函数,这个函数的函数,这个函数 有什么特点?有什么特点?当当d00时时,S,Sn n是常数项为零的二次函数是常数项为零的二次函数21()22nddSnan则则 Sn=An2+Bn令令1,22ddABa11)2nn nSnad-=+(等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法1由由S3=S11得得113 133 211 1311 1022dd d=2113(1) ( 2)2nSnn n 214nn 2(7)49n 当当n=7时时,Sn取最大值取最大值49.配方法配方法等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法2由由S3=S11得得d=20当当n=7时时,Sn取最大值取最大值49.则则Sn的图象如图所示的图象如图所示又又S3=S11所以图象的对称轴为所以图象的对称轴为31172n 7n113Sn等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法3由由S3=S11得得d=2当当n=7时时,Sn取最大值取最大值49. an=13+(n-1) (-2)=2n+15由由+100nnaa得得152132nna7+a8=0等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法4由由S3=S11得得当当n=7时时,Sn取最大值取最大值49.a4+a5+a6+a11=0而而 a4+a11=a5+a10=a6+a9=a7+a8又又d=20a70,a80,d0时时,数列前面有若干项为正数列前面有若干项为正,此时所有正此时所有正项的和为项的和为Sn的最大值的最大值,则则n满足满足当当a10时时,数列前面有若干项为负数列前面有若干项为负,此时所有负此时所有负项的和为项的和为Sn的最小值的最小值,则则n满足满足+100nnaa+100nnaa练习练习:已知数列已知数列an的通项为的通项为an=26-2n,要使此数列的前要使此数列的前n项和最大项和最大,则则n的值为的值为( )A.12 B.13 C.12或或13 D.14C2.等差数列等差数列an前前n项和的性质项和的性质性质性质1:Sn,S2nSn,S3nS2n, 也在等差数列也在等差数列,公差为公差为在等差数列在等差数列an中中,其前其前n项的和为项的和为Sn,则有则有性质性质2:若若Sm=p,Sp=m(mp),则则Sm+p=性质性质3:若若Sm=Sp (mp),则则 Sp+m=性质性质4:(1)若项数为偶数若项数为偶数2n,则则 S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中为中间两项间两项),此时有此时有:S偶偶S奇奇= ,SS 奇奇偶偶n2d0nd1nnaa (m+p)性质性质4:(1)若项数为奇数若项数为奇数2n1,则则 S2n-1=(2n 1)an (an为中间项为中间项), 此时有此时有:S偶偶S奇奇= ,SS 奇奇偶偶两等差数列前两等差数列前n项和与通项的关系项和与通项的关系性质性质6:若数列若数列an与与bn都是等差数列都是等差数列,且且前前n项的和分别为项的和分别为Sn和和Tn,则则nnab 性质性质5: 为等差数列为等差数列.nSnan1nn 2121nnST 例例1.设等差数列设等差数列an的前的前n项和为项和为Sn,若若S3=9,S6=36,则则a7+a8+a9=( )A.63 B.45 C.36 D.27例例2.在等差数列在等差数列an中中,已知公差已知公差d=1/2,且且a1+a3+a5+a99=60,a2+a4+a6+a100=( )A.85 B.145 C.110 D.90BA3.等差数列等差数列an前前n项和的性质的应用项和的性质的应用例例3.一个等差数列的前一个等差数列的前10项的和为项的和为100,前前100项的和为项的和为10,则它的前则它的前110项的和项的和为为 .110例例4.两等差数列两等差数列an 、bn的前的前n项和分项和分别是别是Sn和和Tn,且且71427nnSnTn 求求 和和 . 55abnnab556463ab 146823nnanbn 等差数列等差数列an前前n项和的性质的应用项和的性质的应用练习练习1 1已知等差数列已知等差数列25,21,19, 25,21,19, 的前的前n项和项和为为Sn, ,求使得求使得Sn最大的序号最大的序号n的值的值. .练习练习2:2:求集合求集合的元素个数,并求这些元素的和的元素个数,并求这些元素的和. .21,60MmmnnN m*=-练习练习3:已知在等差数列:已知在等差数列 an n 中中, ,a10=23, ,a25=-22 , ,Sn为其前为其前n项和项和. .(1 1)问该数列从第几项开始为负?)问该数列从第几项开始为负?(2 2)求)求S10(3 3)求使)求使 Sn0的最小的正整数的最小的正整数n. . (4) (4) 求求| |a1 1|+|+|a2 2|+|+|a3 3|+|+|+|a2020| |的值的值1.1.根据等差数列前根据等差数列前n n项和,求通项公式项和,求通项公式. .-= -1112nnnanaSSn2 2、结合二次函数图象和性质求、结合二次函数图象和性质求 的最值的最值. .21()22nddSnan=+-3.等差数列等差数列an前前n项和的性质项和的性质性质性质1:Sn,S2nSn,S3nS2n, 也在等差数列也在等差数列,公差为公差为在等差数列在等差数列an中中,其前其前n项的和为项的和为Sn,则有则有性质性质2:若若Sm=p,Sp=m(mp),则则Sm+p=性质性质3:若若Sm=Sp (mp),则则 Sp+m=性质性质4:(1)若项数为偶数若项数为偶数2n,则则 S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中为中间两项间两项),此时有此时有:S偶偶S奇奇= ,SS 奇奇偶偶n2d0nd1nnaa (m+p)性质性质4:(1)若项数为奇数若项数为奇数2n1,则则 S2n-1=(2n 1)an (an为中间项为中间项), 此时有此时有:S偶偶S奇奇= ,SS 奇奇偶偶两等差数列前两等差数列前n项和与通项的关系项和与通项的关系性质性质6:若数列若数列an与与bn都是等差数列都是等差数列,且且前前n项的和分别为项的和分别为Sn和和Tn,则则nnab 性质性质5: 为等差数列为等差数列.nSnan1nn 2121nnST 作业作业P46 B组组 2T,4T