正项级数及其审敛法ppt课件.ppt
一、正项级数及其审敛法一、正项级数及其审敛法1.1.定义定义: :,中各项均有中各项均有如果级数如果级数01 nnnuu这种级数称为正项级数这种级数称为正项级数. . nsss212.2.正项级数收敛的充要条件正项级数收敛的充要条件: :定理定理.有界有界部分和所成的数列部分和所成的数列正项级数收敛正项级数收敛ns部分和数列部分和数列 为单调增加数列为单调增加数列. .ns第二节第二节 常数项级数的审敛法常数项级数的审敛法 且且), 2, 1( nvunn, ,若若 1nnv收敛收敛, ,则则 1nnu收敛;收敛;反之,若反之,若 1nnu发散,则发散,则 1nnv发散发散. .证明证明nnuuus 21且且 1)1(nnv设设,nnvu , 即部分和数列有界即部分和数列有界.1收敛收敛 nnu均为正项级数,均为正项级数,和和设设 11nnnnvu3.比较审敛法比较审敛法nvvv 21nns 则则)()2( nsn设设,nnvu 且且 不是有界数列不是有界数列.1发发散散 nnv推推论论: : 若若 1nnu收收敛敛( (发发散散) )且且)(nnnnvkuNnkuv , ,则则 1nnv收收敛敛( (发发散散) ). .定理证毕定理证毕.比较审敛法的不便比较审敛法的不便: 须有参考级数须有参考级数. 例例 1 1 讨讨论论 P P- -级级数数 ppppn14131211的的收收敛敛性性. .)0( p解解, 1 p设设,11nnp .级级数数发发散散则则 P, 1 p设设oyx)1(1 pxyp1234由图可知由图可知 nnppxdxn11pppnns131211 nnppxdxxdx1211 npxdx11)11(1111 pnp111 p,有界有界即即ns.级数收敛级数收敛则则 P 发散发散时时当当收敛收敛时时当当级数级数,1,1ppP重要参考级数重要参考级数: : 几何级数几何级数, P-, P-级数级数, , 调和级数调和级数. .例例 2 2 证证明明级级数数 1)1(1nnn是是发发散散的的.证明证明,11)1(1 nnn,111 nn发散发散而级数而级数.)1(11 nnn发散发散级数级数4.4.比较审敛法的极限形式比较审敛法的极限形式: :设设 1nnu与与 1nnv都是正项级数都是正项级数, , 如果如果则则(1) (1) 当当时时, , 二级数有相同的敛散性二级数有相同的敛散性; ; (2) (2) 当当时,若时,若收敛收敛, , 则则收敛收敛; ; (3) (3) 当当时时, , 若若 1nnv发散发散, , 则则 1nnu发散发散; ;,limlvunnn l00 l l 1nnv 1nnu证明证明lvunnn lim)1(由由, 02 l 对于对于,N ,时时当当Nn 22llvullnn )(232Nnvluvlnnn 即即由比较审敛法的推论由比较审敛法的推论, 得证得证.设设 1nnu为为正正项项级级数数, ,如如果果0lim lnunn ( (或或 nnnulim) ), ,则则级级数数 1nnu发发散散; ;如如果果有有1 p, , 使使得得npnun lim存存在在, ,则则级级数数 1nnu收收敛敛. .5 5. .极极限限审审敛敛法法:例例 3 3 判定下列级数的敛散性判定下列级数的敛散性: :(1) 11sinnn ; (2) 131nnn ;解解)1(nnnn3131lim nnn11sinlim , 1 原级数发散原级数发散.)2(nnn1sinlim nnn311lim , 1 ,311收敛收敛 nn故原级数收敛故原级数收敛.6 6. .比比值值审审敛敛法法( (达达朗朗贝贝尔尔 D DA Al le em mb be er rt t 判判别别法法) ):设设 1nnu是是正正项项级级数数, ,如如果果)(lim1 数数或或nnnuu则则1 时时级级数数收收敛敛; ;1 时时级级数数发发散散; ; 1 时时失失效效. .证明证明,为有限数时为有限数时当当 , 0 对对,N ,时时当当Nn ,1 nnuu有有)(1Nnuunn 即即,1时时当当 ,1时时当当 ,1 取取, 1 r使使,11 NmmNuru,12 NNruu,1223 NNNurruu,111 mNmur收敛收敛而级数而级数,11收敛收敛 NnummNuu收敛收敛, 1 取取, 1 r使使,时时当当Nn ,1nnnuruu . 0lim nnu发散发散比值审敛法的优点比值审敛法的优点: 不必找参考级数不必找参考级数. . 两点注意两点注意:1 1. .当当1 时时比比值值审审敛敛法法失失效效; ;,11发发散散级级数数例例 nn,112收敛收敛级数级数 nn)1( ,232)1(2nnnnnvu 例例,2)1(211收敛收敛级数级数 nnnnnu,)1(2(2)1(211nnnnnauu 但但,61lim2 nna,23lim12 nna.limlim1不不存存在在nnnnnauu 2.2.条件是充分的条件是充分的, ,而非必要而非必要. .例例 4 4 判判别别下下列列级级数数的的收收敛敛性性:(1) 1!1nn; (2) 110!nnn; (3) 12)12(1nnn.解解)1(!1)!1(11nnuunn 11 n),(0 n.!11收敛收敛故级数故级数 nn),( n)2(!1010)!1(11nnuunnnn 101 n.10!1发发散散故故级级数数 nnn)3()22()12(2)12(limlim1 nnnnuunnnn, 1 比值审敛法失效比值审敛法失效, 改用比较审敛法改用比较审敛法,12)12(12nnn ,112收敛收敛级数级数 nn.)12(211收敛收敛故级数故级数 nnn7.7.根值审敛法根值审敛法 ( (柯西判别法柯西判别法) ):设设 1nnu是是正正项项级级数数, ,如如果果 nnnulim)( 为为数数或或 , ,则则1 时时级级数数收收敛敛; ;,1 ,1 nnn设级数设级数例如例如nnnnnu1 n1 )(0 n级数收敛级数收敛.1 时时级级数数发发散散; ; 1 时时失失效效. .二、交错级数及其审敛法二、交错级数及其审敛法定义定义: : 正、负项相间的级数称为交错级数正、负项相间的级数称为交错级数. . nnnnnnuu 111)1()1(或或莱布尼茨定理莱布尼茨定理 如果交错级数满足条件如果交错级数满足条件: :( () ), 3 , 2 , 1(1 nuunn;(;() )0lim nnu, ,则级数收敛则级数收敛, ,且其和且其和1us , ,其余项其余项nr的绝对值的绝对值1 nnur. .)0( nu其其中中证明证明nnnnuuuuuus212223212)()( 又又)()()(21243212nnnuuuuuus 1u , 01 nnuu.lim12ussnn , 0lim12 nnu,2是单调增加的是单调增加的数列数列ns,2是有界的是有界的数列数列ns)(limlim12212 nnnnnuss, s .,1uss 且且级数收敛于和级数收敛于和),(21 nnnuur余余项项,21 nnnuur满足收敛的两个条件满足收敛的两个条件,.1 nnur定理证毕定理证毕.例例 5 5 判判别别级级数数 21)1(nnnn的的收收敛敛性性. .解解2)1(2)1()1( xxxxx)2(0 x,1单单调调递递减减故故函函数数 xx,1 nnuu1limlim nnunnn又又. 0 原级数收敛原级数收敛.三、绝对收敛与条件收敛三、绝对收敛与条件收敛定义定义: : 正项和负项任意出现的级数称为任意项级数正项和负项任意出现的级数称为任意项级数. .定定理理 若若 1nnu收收敛敛, ,则则 1nnu收收敛敛. .证明证明), 2 , 1()(21 nuuvnnn令令, 0 nv显显然然,nnuv 且且,1收敛收敛 nnv),2(11 nnnnnuvu又又 1nnu收敛收敛.上定理的作用:上定理的作用:任意项级数任意项级数正项级数正项级数定义定义: :若若 1nnu收敛收敛, , 则称则称 1nnu为绝对收敛为绝对收敛; ;若若 1nnu发发散散, ,而而 1nnu收收敛敛, , 则则称称 1nnu为为条条件件收收敛敛. .例例 6 6 判判别别级级数数 12sinnnn的的收收敛敛性性. .解解,1sin22nnn ,112收敛收敛而而 nn,sin12 nnn收敛收敛故由定理知原级数绝对收敛故由定理知原级数绝对收敛.思考题思考题 设正项级数设正项级数 1nnu收敛收敛, , 能否推得能否推得 12nnu收敛收敛? ?反之是否成立反之是否成立? ?