欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《高等数学》向量代数和空间解析几何ppt课件.ppt

    • 资源ID:29994067       资源大小:1MB        全文页数:34页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《高等数学》向量代数和空间解析几何ppt课件.ppt

    空间解析几何 一、向量代数一、向量代数二、空间解析几何二、空间解析几何1 1、向量的概念、向量的概念定义定义: :既有大小又有方向的量称为向量既有大小又有方向的量称为向量. .相等向量相等向量:大小相等大小相等,方向相同方向相同负向量负向量:大小相同大小相同,方向相反方向相反向径向径: :起点为原点起点为原点零向量零向量:模为模为0的向量的向量,方向不固定方向不固定向量的模向量的模:向量的长度向量的长度(大小大小)单位向量单位向量:模为模为1的向量的向量一、向量代数一、向量代数(2)向量的分解式:)向量的分解式:,zyxaaaa .,轴轴上上的的投投影影分分别别为为向向量量在在其其中中zyxaaazyxkajaiaazyx在三个坐标轴上的分向量:在三个坐标轴上的分向量:kajaiazyx,(3)向量的坐标表示式:)向量的坐标表示式:向量的坐标:向量的坐标:zyxaaa,2 2、向量的表示法、向量的表示法(1)有向线段)有向线段 (模和方向模和方向余弦余弦)(1)加法:cba 3 3、向量的线性运算、向量的线性运算dba ab(2)减法:cba dba (3)(3)向量与数的乘法:向量与数的乘法:, 0)1( |aa , 0)2( 0 a , 0)3( |aa 线性运算的坐标表达式线性运算的坐标表达式,zyxaaaa ,zyxbbbb ,zzyyxxbabababa ,zzyyxxbabababa ,zyxaaaa kbajbaibazzyyxx)()()( kbajbaibazzyyxx)()()( kajaiazyx)()()( 222|zyxaaaa 向量模长的坐标表示式向量模长的坐标表示式222coszyxxaaaa 222coszyxyaaaa 222coszyxzaaaa 向量方向余弦的坐标表示式向量方向余弦的坐标表示式)1coscoscos(222 4 4、数量积、数量积 cos|baba zzyyxxbabababa 数量积的坐标表达式数量积的坐标表达式ba 0 zzyyxxbababa222222coszyxzyxzzyyxxbbbaaabababa 两向量夹角余弦的坐标表示式两向量夹角余弦的坐标表示式aprjbbprjaba0baaaa2(1) 交换律(2) 结合律),(为实数abbaba)()( ba)(ba)()(ba)(ba)(ba(3) 分配律cbcacba定义:向量方向 :(叉积)记作且符合右手规则模 :向量积 ,,的夹角为设ba,c,acbccsinabbac称c的与为向量babacba 几何意义:右图三角形面积abba21S为非零向量, 则aa) 1 (0ba,)2(0baba运算律运算律(2) 分配律(3) 结合律abcba )(cbcaba )()( ba)(baba) 1 (kbabajbabaibabaxyyxzxxzyzzy)()()(向量积的坐标表达式向量积的坐标表达式ba zyxzyxbbbaaakjiba bazzyyxxbababa0ba解解ba )1(2)4()2(111 . 9 222222cos)2(zyxzyxzzyyxxbbbaaabababa ,21 ajbbabPr|)3( . 3|Pr bbaajb .43 解解zyxzyxbbbaaakjibac 211423 kji,510kj 55510|22c|0ccc .5152 kj22343cos322)2(17例例3. 已知向量的夹角且解:解:,43ba ,. |ba 求, 2|a, 3|b2ba)()(babaaaba2bb22cos2bbaa17ba, )7,4,2(),5,4,3(, )3,2, 1(CBA角形 ABC 的面积 解解: 如图所示,CBAS ABC21kji222124)(21,4,622222)6(4211421ACAB求三x横轴横轴y纵轴纵轴z竖轴竖轴 定点定点o1 1、空间直角坐标系、空间直角坐标系空间的点空间的点有序数组有序数组),(zyx二、空间解析几何二、空间解析几何 21221221221zzyyxxMM 它们距离为它们距离为两点间距离公式两点间距离公式: :点到平面的距离公式:点到平面的距离公式:的距离为到平面点0),(0000DCzByAxzyxM222000CBADCzByAxd(1 1)旋转曲面)旋转曲面定义:以一条平面曲线绕定义:以一条平面曲线绕其平面上的一条直线旋转其平面上的一条直线旋转一周所成的曲面一周所成的曲面. .这条定直线叫旋转曲面的这条定直线叫旋转曲面的轴轴. .2 2、曲面、曲面.),(对对应应与与三三元元方方程程空空间间曲曲面面0zyxFS方程特点方程特点: :0),()2(0),() 1 (00),(:2222yzxfyLzyxfxLzyxfL方程为方程为轴旋转所成的旋转曲面轴旋转所成的旋转曲面绕绕曲线曲线方程为方程为轴旋转所成的旋转曲面轴旋转所成的旋转曲面绕绕曲线曲线设有平面曲线设有平面曲线(2 2) 柱面柱面定义:定义:平行于定直线并沿定曲线平行于定直线并沿定曲线C C移动的直线移动的直线L L所形成的曲面所形成的曲面. .这条定曲线叫柱面这条定曲线叫柱面的的准线准线,动直线叫,动直线叫柱面的柱面的母线母线. .从柱面方程看柱面的特征:从柱面方程看柱面的特征:zyx),(1222222为正数cbaczbyax(3) 二次曲面二次曲面zqypx2222 椭圆抛物面( p , q 同号) 双曲抛物面(鞍形曲面)zqypx2222zyx特别,当 p = q 时为绕 z 轴的旋转抛物面.( p , q 同号)zyx单叶双曲面单叶双曲面zxy),(1222222为正数cbaczbyax双叶双曲面双叶双曲面),(1222222为正数cbaczbyaxzxyo3 3、空间曲线、空间曲线 0),(0),(zyxGzyxF(1 1) 空间曲线的一般方程空间曲线的一般方程 )()()(tzztyytxx(2 2) 空间曲线的参数方程空间曲线的参数方程空间平面空间平面一般式点法式截距式0DCzByAx)0(222CBA1czbyax三点式0131313121212111zzyyxxzzyyxxzzyyxx4. 4. 空间直线与平面的方程空间直线与平面的方程),( :000zyx点0)()()(000zzCyyBxxA),(:CBAn 法向量 当 D = 0 时, A x + B y + C z = 0 表示 通过原点通过原点的平面; 当 A = 0 时, B y + C z + D = 0 的法向量平面平行于 x 轴; A x+C z+D = 0 表示 A x+B y+D = 0 表示 C z + D = 0 表示 A x + D =0 表示 B y + D =0 表示0DCzByAx)0(222CBA平行于 y 轴的平面;平行于 z 轴的平面;平行于 xoy 面 的平面;平行于 yoz 面 的平面;平行于 zox 面 的平面.,), 0(iCBn解解: 因平面通过 x 轴 ,0 DA故设所求平面方程为0zCyB代入已知点) 1,3,4(得BC3化简,得所求平面方程03 zy为直线的方向向量.一般式对称式参数式0022221111DzCyBxADzCyBxAtpzztnyytmxx000pzznyymxx000),(000zyx),(pnms 为直线上一点; 解解: :先在直线上找一点.043201 zyxzyx632zyzy再求直线的方向向量2,0zy令 x = 1, 解方程组,得交已知直线的两平面的法向量为是直线上一点 .)2,0, 1(故.s, ) 1, 1, 1 (1n)3, 1,2(2n21ns,ns21nns故所给直线的对称式方程为参数式方程为tztytx32 41t41x1y32z解题思路解题思路: 先找直线上一点;再找直线的方向向量.)3, 1,4(21nns312111kji241312zyx与平面062zyx的交点 . 提示提示: : 化直线方程为参数方程代入平面方程得 1t从而确定交点为(1,2,2).tztytx2432t面与面的关系面与面的关系0212121CCBBAA212121CCBBAA平面平面垂直:平行:夹角公式:),( , 0:111111111CBAnDzCyBxA),( , 0:222222222CBAnDzCyBxA021nn021nn2121cosnnnn ,1111111pzznyymxxL:直线0212121ppnnmm,2222222pzznyymxxL:212121ppnnmm直线垂直:平行:夹角公式:),(1111pnms ),(2222pnms 021ss021ss2121cosssss CpBnAm平面:垂直:平行:夹角公式:0CpBnAm直线:),(, 0CBAnDCzByAx),(,pnmspzznyymxx0ns0nsnsnssin

    注意事项

    本文(《高等数学》向量代数和空间解析几何ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开