等差数列求和ppt课件.ppt
有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。高中数学高中数学欢迎指导欢迎指导有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.等差数列的定义:等差数列的定义: 1(2)nnnaaad n 是是等等差差数数列列2.通项公式:通项公式:1(1) .naand3.重要性质重要性质:() .nmaanm d .mnpqmnpqaaaa 复习复习 一般地,如果一个数列从第一般地,如果一个数列从第2项起,每一项与它的前项起,每一项与它的前一项的差等于一项的差等于同一个常数同一个常数,那么这个数列就叫做,那么这个数列就叫做等差数列等差数列有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 高斯出生于一个工高斯出生于一个工匠家庭,幼时家境贫困,匠家庭,幼时家境贫困,但聪敏异常。上小学四但聪敏异常。上小学四年级时,一次老师布置年级时,一次老师布置了一道数学习题:了一道数学习题:“把把从从1 1到到100100的自然数加起的自然数加起来,和是多少?来,和是多少?”年仅年仅1010岁的小高斯略一思索岁的小高斯略一思索就得到答案就得到答案50505050,这使,这使老师非常吃惊。那么高老师非常吃惊。那么高斯是采用了什么方法来斯是采用了什么方法来巧妙地计算出来的呢?巧妙地计算出来的呢? 高斯(高斯(1777-18551777-1855),), 德德国数学家、物理学家和天文学国数学家、物理学家和天文学家。他和牛顿、阿基米德,被家。他和牛顿、阿基米德,被誉为有史以来的三大数学家。誉为有史以来的三大数学家。有有“数学王子数学王子”之称。之称。 高斯高斯“神速求和神速求和”的故事的故事: : 情景情景1有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。首项与末项的和:首项与末项的和: 1100101,第第2项与倒数第项与倒数第2项的和:项的和: 299 =101, 第第3项与倒数第项与倒数第3项的和:项的和: 398 101, 第第50项与倒数第项与倒数第50项的和:项的和:5051101,于是所求的和是:于是所求的和是:.mnpqm np qaaaa 求求 S=1+2+3+100=S=1+2+3+100=?你知道高斯是怎么计算的吗?高斯算法:高斯算法:高斯算法用到了等差数列的什么性质?高斯算法用到了等差数列的什么性质?50502100101S有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 若若V形架的的最下面一层放一支铅笔,往上每形架的的最下面一层放一支铅笔,往上每一层都比它下面一层一层都比它下面一层多放一支,最上面多放一支,最上面一层有很多支铅笔,一层有很多支铅笔,老师说有老师说有n支。问:支。问:这个这个V形架上共放形架上共放着多少支铅笔?着多少支铅笔? 创设情景创设情景问题就是:问题就是:1 2 3 (n-1) n若用首尾配对相加法,需要分类讨论若用首尾配对相加法,需要分类讨论.三角形三角形平行四平行四边形边形有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。nn) 1(321计算:2) 1() 1(321nnnnn (n-1) (n-2) 2 1倒序相加法倒序相加法 那么,对一般的等差数列,如何求它的前前n项和项和呢?前前n项和项和) 1() 1(3212nnnn分析:这分析:这其实是求其实是求一个具体一个具体的等差数的等差数列前列前n项项和和.有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。123nnSaaaa12()nnSn aa 1213212nnnnnSaaaaaaaa121321nnnnaaaaaaaa又问题分析问题分析已知等差数列已知等差数列 an 的首项为的首项为a1,项数,项数是是n,第,第n项为项为如何才能将如何才能将等式的右边等式的右边化简?化简?121nnnnSaaaa1()2nnn aaS即有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。求和公式求和公式1()2nnn aaS等差数列的前等差数列的前n项和的公式:项和的公式:思考:(思考:(1)公式的文字语言;)公式的文字语言;11 ,naand由于1(1)2nn nSnad故(2)公式的特点;)公式的特点;不含不含d可知三可知三求一求一1(1)2nn nSnad等差数列的等差数列的前前n项和等项和等于于首末两项首末两项的和与项数的和与项数乘积的一半乘积的一半。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 dnnnaSn2)11 (dnaan)1(1 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例1:1:根据题中的条件根据题中的条件, ,求相应的等差数列求相应的等差数列aan n 的的SnSn10;n95,a5,(1)an150;n2,d100,(2)a11(3)14.5,0.7,32.nada5 50 00 0. .2 29 95 5) )( (5 51 10 0S S1 10 0解:2550)2(2) 150501005050(解:S,2617 . 05 .1432n解:.5 .6042)325 .14(2626 S1()(1)2nnn aaS)()(2211dnnnaSn 举例举例有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。(1 1) 5+6+7+79+80(2 2) 1+3+5+1+3+5+ +(2 2n-1-1)(3 3)1-2+3-4+5-6+1-2+3-4+5-6+ +(2 2n-1-1)-2-2n-nn2 135+ 21n2 解:22nn2n 135+ 212+4+6+2nn3 解:原式21nn n1212nnn 3230提示:n=76法二:1212222nnnn 思考:如何求下列数列的和?思考:如何求下列数列的和? 举例举例有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例2. 已知一个等差数列的前已知一个等差数列的前10项的和是项的和是310,前前20项的和是项的和是1220,能否求其前,能否求其前n项和的公项和的公式式.641dannnnnSn2362) 1(431010S122020S由题设:由题设:122019020310451011dada得:得:解:解: 举例举例有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 :关未知数的有a的等差数列求,根据下列条件:练n相应;,999,54,20) 1 (1ndSaann及求;,629,37,31) 2(1nnaaSnd及求27,1317)1 (nd23,11)2(1naa有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 例例3 3 在等差数列在等差数列aan n 中,中, 已知已知 ,求,求S S7.7.4053 aa1777()74014022aaS+=11()()22nkn knn aan aaS 1()2nnn aaS 举例举例有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1 1、用倒序相加法推导等差数列前、用倒序相加法推导等差数列前n项和公式项和公式; ;1n1( ) ()2(1)S2nnn aaSn nnad 2 2、求求和和公公式式 小结小结3 3、应用公式求和、应用公式求和.“.“知三求二知三求二”,方程的思想,方程的思想. .已知首项、末项用公式已知首项、末项用公式;已知首项、公差用公式;已知首项、公差用公式.应用求和公式时一定弄清项数应用求和公式时一定弄清项数n. .当已知条件不足以求出当已知条件不足以求出a1 1和和d时,要认真观察,时,要认真观察,灵活应用等差数列的性质,看能否用整体思想求灵活应用等差数列的性质,看能否用整体思想求a1 1+ +an的值的值. .