欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    定积分中奇偶函数和周期函数管理方法.doc

    • 资源ID:3019072       资源大小:769.93KB        全文页数:13页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    定积分中奇偶函数和周期函数管理方法.doc

    .-定积分计算中周期函数和奇偶函数的处理方法一、基本方法(一)、奇偶函数和周期函数的性质在定积分计算中,根据定积分的性质和被积函数的奇偶性,及其周期性,我们有如下结论1、若是奇函数(即),那么对于任意的常数a,在闭区间上,。2、若是偶函数(即),那么对于任意的常数a,在闭区间上。3、若为奇函数时,在的全体原函数均为偶函数;当为偶函数时,只有唯一原函数为奇函数即.事实上:设,其中为任意常数。当为奇函数时,为偶函数,任意常数也是偶函数的全体原函数为偶函数;当为偶函数时,为奇函数,任意常数时为偶函数 既为非奇函数又为非偶函数,的原函数只有唯一的一个原函数即是奇函数。4、若是以为周期的函数(即),且在闭区间上连续可积,那么。5、若是以为周期的函数(即),那么以为周期的充要条件是 事实上:,由此可得 。(二)、定积分中奇偶函数的处理方法1. 直接法:若果被积函数直接是奇函数或者偶函数,之间按照奇偶函数的性质进行计算即可,但要注意积分区间。2. 拆项法:观察被积函数,在对称区间如果被积函数复杂但可以拆成奇偶函数和的形式,则分开积分会简化计算。3. 拼凑法:被积函数在对称区间直接积分比较困难,并且不能拆项,可以按照如下方法处理:设 ,则,从而就转换为了奇函数和偶函数在对称区间的计算。(三)、定积分中周期函数的处理方法对于周期函数的定积分,最主要是能够确定被积函数的周期(特别是三角函数与复合的三角函数的周期),并熟悉周期函数的积分性质,基本上就能解决周期函数定积分的问题。二、典型例题例1 设在上连续可积,证明:(1)若为奇函数则(2)若为偶函数,则。证明:(1)因为,而对前一项中令,则所以.(2)因为, 而 ,对前一项中 令相似的有,所以.例2 设在上连续,且以T为周期,证。证明: 由,在上式右端最后一个积分中,令则有 ,即有,成立再证,因为对于 令 则,因为所以有,。例3 求定积分 。解:被积函数为偶函数,例4 求定积分,其中为自然数。解:注意到是偶函数且以为周期,因此利用性质可以简化计算.例5 计算:(自然数或为奇数)。解:由周期函数积分性质得当为奇数时,由于被积函数为奇函数,故当为奇数时(设)时其中为的某个多项式(不含常数项) 因此例6 求定积分 。解:因为被积函数是为奇函数,且在对称区间故例7 求定积分I=。解:I=,因为是奇函数,而是偶函数,所以I=2 =例8 求定积分I=。解:设则I= 因为是奇函数所以例9 求定积分I=。解:令,则,因为,所以,例10 求定积分 I=。分析:若此题采用常规求法,会发现过程相当复杂,但是利用奇偶函数的性质就能很容易求出。原函数可以看做一个奇函数f(x)=和一个偶函数u(x)=之和。解:I= = + =2 =2例11 求定积分I=。分析:如果此题按照一般解法直接进行求解,那么会发现很繁琐,注意到为奇函数在对称区间上积分为零,因此就可以简化积分,而在上积分恰好是以原点为圆心,半径为的上半圆周面积, s= 解:I= = 0 = 2 = 2 = 例12 设在上连续,证明,并由此计算 。解:若记,显而易见为偶函数,为奇函数,而且.所以有利用上述公式可得例13 求定积分I=。分析:此题的积分区间关于原点对称,从这一点性质中我们可以联想到奇偶函数的性质,但注意到被积函数既不是奇函数也不是偶函数,我们可以将其凑成奇偶函数。按照上一题的结果我们可以知道为奇函数,而为偶函数 解:例14 求定积分 其中。分析:被积函数不是周期函数,无法直接用周期函数的定积分性质计算,采用分部积分比较繁琐,可以考虑还原。令 则移向得: 所以 例15 求定积分 。解: 例16 求定积分 解:注意到被积函数是以为周期的偶函数,因此可用定积分中相应性质简化计算例17 求定积分。解:注意到是对称区间,函数可以应用定积分的奇偶性来计算例18 证是以T为周期的周期函数,则。证明:因为 故只需证明由题设可知 现令,当时,;当时,且 所以有例19 设是以为周期的周期函数,证明。分析:等价于 所以 =即由题设 可令 证明:令,则例20 设函数(1)当n为正整数,且时,证明;(2)求证明:(1)因为,且,所以,又因为具有周期,在长度的积分区间上积分值相等:,从而同理可得到(2)由(1)有,当去极限,由夹逼定理得,例21 设函数在上连续,而且。证明:(1)若为偶函数,则也是偶函数;(2)若单调不减,则单调不减(1)证明:令,则故为偶函数。(2)由于被积函数连续,所以可导,且,因此在上单调不减例22 设在上连续,以T为周期,令,求证:(1)一定能表成:,其中k为某常数,是以T为周期的周期函数;(2);(3)若有,n为自然数,则当时,有。证明:(1) 即确定常数k,使得以T为周期,由于T因此,取,则是以T为周期的周期函数。 此时 (2) .且在上连续并以T为周期,于是在在有界,在也有界。因此(3)因,所以当时,例23 设是上的连续函数,试运用周期函数性质证明。证明:因为,其中,令,令,则,所以左端,按照周期函数的性质知所以左端=,知 故例24 设,证明(1);(2)求出的最大最小值。证明:(1),设,当时,;当时,则(2) 因为右端连续,故可导,又为周期函数,故只讨论一个周期内即可,现讨论 当时,当时,当时,所以当时取最大值,;当时取最大值,。参考文献1曹绳武,王振中,于远许 高等数学重要习题集 大连理工大学出版社 20012郝涌,卢士堂 考研数学精解 华中理工大学出版社 19993李永乐,李正元 考研复习全书国家行政出版社 20124林益,邵琨,罗德斌等 数学分析习题详解 2005课程论文成绩考核表学生姓名专业班级题 目评 审 者考 核 项 目评分指导教师1平时态度与遵守纪律的情况(满分20分)2掌握基本理论、专业知识、基本技能的程度和水平(满分20分)3抽签答题的正确性(满分20分)4完成任务的情况与水平(按规范化要求)(满分20分)5答辩时讲述的条理性与系统性(满分20分)总评成绩总评成绩等级(优、良、中、及格、不及格)指导教师签字:

    注意事项

    本文(定积分中奇偶函数和周期函数管理方法.doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开