欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数字电子钟实验报告(共36页).docx

    • 资源ID:30235433       资源大小:1.73MB        全文页数:36页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数字电子钟实验报告(共36页).docx

    精选优质文档-倾情为你奉上课程名称:电子电路安装与调试姓 名:陈肖苇、李晓杰、张晨靖院 系:信息与电子工程学院专 业:电子科学与技术学 号:指导教师:王子立本科实验报告2016年7月19日实验报告课程名称: 电子电路安装与调试 指导老师:王子立 成绩:_实验名称: 多功能数字钟的设计与制作 实验类型: 设计型 同组成员: 一、实验目的和要求实验目的:1.学习并掌握中规模集成电路设计制作数字电路系统的方法,装调技术和数字钟的功能扩展电路的设计。2.熟悉集成电路的使用方法。实验要求:1.选用74系列或COMS系列中规模集成电路,LED数码显示器为主要器件设计并制作一多功能数字电子钟,要求具有如下功能:基本功能:以数字形式显示时、分、秒的时间,小时的显示为“12”翻“1”,手动快校时。扩展功能:仿广播电台整点报时,报整点时数,定时控制(时间自定)。自行设计电路,至少实现其中两个扩展功能,电路形式尽可能不与前述电路相同。2.设计与制作要求拟定数字电子钟电路的组成框图,要求电路的基本功能与扩展功能同时实现,使用的器件要尽量少、成本低。设计、仿真、制作各单元电路,要求器件布局合理、美观,便于级联与调试。测试数字电子钟系统的逻辑功能,同时满足基本功能与扩展功能的要求。画出数字钟系统的整机逻辑电路图,设计印制电路板,要求器件布局合理,布线整齐、美观。安装并调试整个数字电子钟。二、实验内容和原理实验内容:1.设计主体电路,完成基本功能:以数字形式显示时、分、秒的时间,小时的显示为“12”翻“1”,手动快校时。2.设计扩展电路,完成扩展功能:仿广播电台整点报时,报整点时数,定时控制(时间自定)。3.仿真各单元电路。4.制作PCB板并印刷电路。5.焊接电路板并调试。实验原理:1.数字电子钟电路原理数字电子钟实际上是一个对标准频率(1Hz)进行计数的电路,主要由基准频率源、分频器、计数器、译码显示驱动器、数字显示器和校准电路等组成。基准频率源是数字电子钟的核心,它产生一个矩形波时间基准信号,其频率精度和稳定性决定了计时的精度。分频器采用计数器实现,以得到1秒(即频率1Hz)的标准秒信号脉冲。在计数器电路中,对秒、分计数采用60进制的计数器,对时计数器采用12翻1 的计数器。译码器采用BCD码七段译码显示驱动器。显示器采用LED七段数码管。整个数字电路系统的原理如图2.1所示,分为主体电路和扩展电路两大部分。其中主体电路完成数字钟的基本功能,扩展电路实现数字钟的扩展功能。图2.1 多功能数字钟系统组成框图该系统的工作原理是:由振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,经分频器输出标准脉冲信号。秒计数器满60后想分计数器进位,分计数器满60或向小时计数器进位,小时计数器按照“12翻1”规律计数。计数器的输出经译码器送显示器。计时出现误差时可以用校时电路进行校时、校分。扩展电路必须在主体电路正常运行的情况下才能进行功能扩展。2.主体电路原理振荡器振荡器是数字钟的核心。振荡器频率的精确度及稳定度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。一般来说,振荡器的频率越高,计时精度越高。由于石英晶体振荡器的输出频率较高,为了得到1Hz的秒信号,需要对振荡器的输出信号进行分频。通常用计数器实现分频,一般用多级二进制计数器实现。图2.2为时钟专用集成电路(CD4060)的晶体振荡电路及分频电路,取晶振的频率为32768Hz,该电路内部含有一个振荡电路和一个14级2分频电路,使用非常方便。在他的输出端可以得到2Hz的标准脉冲和其他高频信号。2Hz再经过一个D触发器二分频后得到1Hz的秒信号。图2.2 用CD4060构成的电子钟振荡与分频电路如果精度要求不高,也可以采用由集成逻辑门与RC组成的时钟源振荡器,或由集成定时器555与RC组成的多谐振荡器。选用555构成的多谐振荡器,设振荡频率f0=103Hz,电路参数如图2.3所示:图2.3 555构成的振荡器分频器分频器的功能主要有两个:一是产生标准秒脉冲信号,二是提供功能扩展电路所需要的信号,如仿电台报时用的1kHz的高音频信号和500Hz的低音频信号等。选用3片中规模集成电路计数器74LS90可以完成上述功能,因为每片是1/10分频,3片级联则可以获得所需要的频率信号,即第一片的Q0端输出频率为500Hz,第二片的Q3端输出为10Hz,第三片的Q3端输出为1Hz。时分秒计数器时间计数单元有时计数、分计数和秒计数三个部分。分和秒都是模M=60的计数器,输出为两位的BCD嘛,其计数规律为0001585900。选用74LS92作为十位计数器,74LS90作为个位计数器,再将他们级联组成模数M=60的计数器。也可以选用10进制计数器,无需进制转换,只需要将Q0和CP1相连即可。CP0与脉冲输入信号相连,Q3可作为向上的进位信号与秒的十位计数电路CP0相连,电路连接如图2.4所示:图2.4 十进制计数器电路秒十位计数电路为6进制计数器,需要进制转换。10进制计数器转换为6进制计数器的电路如图2.5所示,Q2、Q1通过与门与1清零端R相连,实现6进制转换,与门的输出同时还作为向上的进位信号与分个位计数电路CP0相连。图2.5 十进制-六进制计数器转换电路分计数器与秒计数器设计相同。时计数器是一个12翻1的特殊进制计数器,即当数字中运行到12时59分59秒时,秒的个位计数器再输入一个秒脉冲后,数字钟应自动显示为01时00分00秒,实现日常生活中习惯用的计时规律。选用74LS191和74LS74,其电路原理见图2.6:图2.6 时计数器74LS191是带异步置数端的16进制可逆计数器,设计成0-9的10进制加法器和21的减法计数器,用它做1-9的计数何从121的减法计数。74LS74是D触发器,用作时十位计数。工作过程:74LS191从0开始计数,到第九个技术脉冲过后,其输出为1010,与非门G1输出低电平,计数器异步置零,与非门G1又回到高电平。与非门G1回到高电平的瞬间(上升沿),74LS74触发器被置1,完成9-10的进位过程。第十一、十二个脉冲过后计数状态分比为10001/10010,这时与非门G2输出低电平,计数控制端为高电平74LS191被设置为减法计数器,第十三个脉冲到来是74LS191的状态由0010转变为0001.这时,与非门G3的两输入端都为高电平,输出变为低电平,使D触发器清零,整个计数器的状态为00001,完成了从121的状态转换。同时计数器74LS191的控制端又恢复为低电平,重新开始下一个12的计数周期。译码、驱动及显示电路各计数单元的计数器实现了对时间的累计,并分别从Q0-Q3端以BCD码的形式输出,译码驱动显示电路是将计数器的输出数码转换为数码显示器所需要的逻辑并驱动显示器进行显示。图2.7是使用CD4511作为译码驱动电路,选用LED数码管作为显示器。CD4511是CMOS BCD码到7段锁存、译码、驱动电路,它可以直接驱动共阴极LED,图中电阻器限流的作用,其阻值应根据电源电压来决定,一般限制LED数码管每段笔画10mA左右。图2.7 译码、驱动及显示电路时分校正电路当数字钟刚接通电源或计时出现误差时,需要校正时间,校时是数字钟应具备的基本功能。一般电子钟都有时、分、秒等校时功能。对校时电路的要求是:在小时校正的时候不影响分和秒的正常计数,在分校正时不影响小时和秒的正常计数。校时方法有快校时和慢校时两种:快校时通过开关控制,使计数器会1Hz的校时脉冲计数,慢校时用手动产生单脉冲作为校时脉冲。图2.8为校时分电路,它是由基本RS触发器和与非门组成,基本RS触发器的功能是产生单脉冲,防止抖动。其中K为校正用的控制开关。校正脉冲采用1Hz的秒信号,当K处于图示位置时,与非门G1输出高电平,基本RS触发器处于1状态,这是数字钟正常工作,来自分或秒的进位信号能进入时或分计数器。拨动开关K时,与非门G2输出高电平,基本RS触发器处于0状态,这时数字钟处于校正状态,秒信号可以直接进入计数器,而进位信号被阻止,因而能够较快地校正相应计数器的计数值。校准后将校正开关K薄回原位,数字钟继续进行正常的计数工作。如果校时脉冲改由单位脉冲产生器提供,则可以进行慢校时。图2.8 时分校正电路3.功能扩展电路仿广播电台整点报时电路一般数字电子钟都具备整点报时的功能,及在时间到达整点前数秒钟内数字钟会自动发出声响报时。报时方式是发出连续的或者有节奏的音频信号,较复杂的也可以是实时语音提示。仿广播电台整点报时是在整点前数秒内开始报时,响1秒停1秒共5声,前4声低音,最后1声高音。电路功能要求:每当数字钟计时快要到正点时发出声响,通常按照4低音1高音的顺序发出间断声响,以最后一声高音结束的时刻为整点时刻。设4声低音(约500Hz)分别发生在59分的51秒、53秒、55秒和57秒,最后一声高音(约1kHz)发生在59分59秒,它们的持续时间为1秒,如下表所示:CP(秒)Q3S1Q2S1Q1S1Q0S1功能500000510001低音520010停530011低音540100停550101低音560110停570111低音581000停591001高音000000停当Q3S1=0时鸣低音,当Q3S1=1时鸣高音。只有当十位的(Q2Q0)M2=11,分个位的(Q3Q0)M1=11,秒十位的(Q2Q0)S2=11以及秒个位的Q0S2=1时,音响电路才能工作。定时控制电路数字钟在制定的时刻发出信号,或驱动音响电路“闹时”,或对某装置的电源进行接通或断开控制,不管是闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满足规定的要求。例:要求上午7时59分发出闹时信号,持续时间为1min。7时59对应的时个位计数器状态0111,分十位计数器状态0101,分个位计时器状态1001.若将上述计数器输出为1的所有输出端经过与门电路控制音响电路,可以使音响电路正好在7点59响,持续1min后停响。实现的电路如图2.9所示:图2.9 闹时电路有图可见到达时刻时,音响电路的晶体管导通,扬声器发出1kHz的声音,持续1min后晶体管因为输入端为0而截至,电路停闹。报整点时数电路报整点时数电路功能:每当数字钟计时到整点时发出音响,且几点响几声,实现这一功能的电路主要由以下几部分组成:减法计数器:完成几点响几声的功能,即从小时计数器的整点开始进行减法计数,直到零为止。编码器:将小时计数器的5个输出端Q4、Q3、Q2、Q1、Q0按照12翻1的编码要求转换为减法计数器的4个输入端D3、D2、D1、D0所需的BCD码。逻辑控制电路:控制减法计数器的清零与置数,控制报时音响电路的输入信号。根据以上要求,采用过了如图2.10的报整点时数的电路。图2.10 自动报整点时数的电路编码器是由与非门实现的组合逻辑电路,其输出端的逻辑表达式由5变量的卡诺图可得:D0=Q0D1=(Q4Q1)·(Q1Q4)D2=(Q2·(Q4Q1)D3=(Q3Q4)减法计数器选用74LS191,个控制端的作用如下:LD为置数端,当LD=1时将小时计数器输出的数据经数据输入端D0D1D2D3置入,CP0为溢出负脉冲输出端,当减计数到0时,CP0输出一个负脉冲,U/D为加减控制器。U/D=1做减法计数。逻辑控制电路由D触发器74LS74与多级与非门组成。电路的工作原理是:接通电源后按出发开关S,使D触发器清零。该清零脉冲有两个作用,一是使74LS191的置数端LD=0,即将此时对应的小时计数器输出的整点时数置入74LS191,二是封锁1kHz的音频信号,使音响电路无输入脉冲而停止发声。当分十位计数器的进位脉冲的上升沿来到时,小时计数器加1,新的小时数被置入74LS191,进位脉冲的上升沿同时又使74LS191的状态翻转,输出高电平,经G2、G3延时后使LD=1,此时74LS191进行减法计数技术脉冲由1Hz秒信号提供。秒信号低电平时音响电路发出1kHZ声音,秒信号高电平时停响。当减法计数到0时,74LS191的CP0会输出一个负脉冲,使D触发器的触发信号回到0,单触发器的状态保持不变,当74LS191的CP0结束负脉冲回到高电平时,因此时分进位信号仍为高电平,经与非门G1和非门后产生一个上升沿,使D触发器翻转到0状态,74LS191又回到置数状态。如果出现某些整点数不准确,主要原因是逻辑控制电路中的与非门延时时间不够,产生了竞争冒险现象,可以适当增加与非门的级数或接入小电容进行延时。三、主要仪器设备装有AD、Proteus软件的电脑,各类元件,镊子,焊锡,电烙铁等四、操作方法和实验步骤1.实验电路的设计:由图2.1所示的数字钟系统组成框图,按照信号的流向分级安装,逐级级联。级联时如果出现时序配合不同步或尖峰脉冲干扰,引起逻辑混乱,可以增加多级逻辑门来延时,如果显示字符变化很快,模糊不清,可能由于电源电流的跳变引起,可以在集成电路器件的电流端Vcc加退耦滤波电容。画数字钟的主题逻辑电路图。经过联调并纠正设计方案中的错误和不足,再测试电路的逻辑功能是否满足设计要求,最后画出满足设计要求的总体逻辑电路图。2.实验电路的仿真在Proteus软件中绘制电路图。依次进行主体电路和各扩展电路的功能仿真,观察各电路模块的功能是否满足需求,必要时在关键节点添加示波器探针观察电路的波形情况。根据仿真结果对电路进行适当的调整。3.PCB板的绘制4.实验电路的装调五、设计方案及仿真分析1.实验电路的设计:主体电路图5.1 主体电路图5.2 振荡器图5.3 计数器图5.3 译码显示扩展电路图5.4 正点报时图5.5 仿广播电台正点报时图5.6 定时控制图5.7 音响电路图5.8 电源电路2.实验电路的仿真:计时显示功能起初仿真发现小时、分、秒的数字都能够正常显示,且分、秒为60进制,但小时信号出现满7复0的状况,即状态为01234567101112。此时我们的局部电路如图5.9所示:图5.9 原小时计数显示电路当H11=1,H13=1即Q3Q2Q1Q0=1010,U2进行置零操作,但观察仿真发现Q3Q2Q1Q0= 0111即置零。我们将H11、H12、H13和LD信号添加到示波器中观察到波形如图5.11所示。图5.10 添加示波器图5.11 波形显示结合数码管显示发现,当数字从7将要变成8时,H13和LD都出现了跳变,H13原本应当从0状态变为1状态并保持一段时间但实际上H13从0变为1后又迅速跳回0,导致电路计数器被置0。结合这一现象,我们分析原因为,当H13从0状态变成1状态时,H10、H11和H12也同时从1状态变成0,由于电路的延迟,以及计数器采用异步置数,导致跳变现象的产生。因此,我们将原本输入为H11、H13的与非门U18改为输入为H10、H11、H12、H13的四输入与非门,然后再进行仿真,发现功能可正常实现。图5.12 修改后局部电路时间校准功能对电路进行快速时间校准功能的仿真,发现当校时开关下按时,小时数会升高,实现小时校准;当校分开关下按时,分钟数会升高,实现分钟校准,时间校准功能正常。正点报时功能图5.13 音响电路示波器如图5.13将示波器探针放置在音响电路上,观察当整点来临时,示波器显示的波形情况。图5.14所示是4时来临时,音响发出4声提示音的波形。另外选取其他若干整时数,均能实现正点报时功能。图5.14 正点报时仿广播电台报时功能图5.15 仿广播电台报时观察整点即将来临时音响的波形显示,发现在整点前10s开始报时,并从扬声器中听出先报四声低音再报一声高音,更改若干整点数功能均能正常实现。定时控制图5.16 定时控制利用拨码开关设定好定时的小时数和分钟数,仿真发现到达定时时间时扬声器开始发出提示音,声音持续一分钟,更换若干定时时间再次测试,发现定时控制功能都能够正常实现。电源电路图5.15 电源电路3.PCB板的绘制最终设计完成的PCB版如下:图5.16 电路整体设计电路排版的整体设计理念是将电源以及指示灯放在右上角,通电的同时即可检验电路是否能工作以及电源电路是否正常工作,同时,将整块电路中的用户交互界面,即时间显示界面和按钮操作界面分别置于电路板的上下两侧,其中,将时间显示界面放在最上方,方便观察和调试,将按钮操作界面放在电路板的最下方,方面用户操作;至于其他的功能模块,则放在电路板的中间部分,并按功能相关的原则进行排版。电路布线的整体设计理念是在电路板的一周布上一圈的电源线和地线,当有需要时直接横向延伸进去进行连接;电路的其它部分则采取自动布线然后手动进行调整的方法。下面,将针对电路中的关键模块进行详细的介绍。图5.17 电源电路上图为电源电路,将812V的直流电接在JP1上,若电源正常工作,则电源指示灯LED被点亮,同时经过7805输出5V稳压;其中四个电容C11,C12,C13,C14起到滤波的作用,用来稳定稳压器输出的电压。图5.18 晶振电路上图为晶振电路,其中32468为频率为32.768KHz的晶体振荡器,U1是14次分频的分频器,晶振的输出信号经过U1产生一个1KHz的信号和一个2Hz的信号,其中2Hz的信号再次经过分频产生1Hz的信号,当作计数器的时钟。图5.19 数字钟主体部分上图为数字钟的主体部分从上到下分别是共阴数码管显示器,分压限流电阻,显示译码器和16进制计数器。首先由16进制计数器由1Hz信号进行计数和产生进位,同时将状态传递给显示译码器4511,显示译码器4511将计数器传递来的状态进行译码,输出对应的高电平信号,经电阻分压后,点亮对应的共阴数码管显示器,即可实现电路的主体功能。图5.20 开关控制电路上图是我们的开关控制电路,左边四个拨码开关分别对应小时的十位,小时的个位,分钟的10位,分钟的各位,用其对应的二进制代码进行控制。SW2是闹钟控制电路,其中仅开关1闭合,闹钟打开;仅开关2闭合,闹钟关闭;开关1和开关2同时断开,芯片默认高电平,闹钟打开;开关1和开关2同时闭合,则电源和地会短路,所以不能同时闭合。SW1是整点报时控制电路,当开关1闭合时,整点报时功能使能,开关1打开,整点报时功能关闭。S1是小时电路的手动快校时按键,S2为分钟电路的手动快校时按键。4.电子钟的安装与调试安装电路 按照原理图、PCB图和板子上的元件名称安装、焊接电路,芯片先焊插座,方便出现问题时进行修改。老师告知PCB板可能出现几处错误,因为修改元件时自动布线把过孔取消了,因此几根地线没有连上。我们检查PCB板与AD中的PCB图连线,计划用导线将没连上的线连上,后来发现错误已经被修改。电源电路安装好电路后,在没有装芯片的情况下,测试电源电路是否正常。将直流电源调整为10V,限流在0.6A左右,按下OUTPUT,电源电路的指示LED灯亮,用万用表测量输出端的电压,在5V左右,故电源电路正常工作。主体电路的调试 按照原理图首先安装CD4060芯片,测试振荡电路是否正常。示波器探头首先接CD4060的4脚,接地端接电源地,测得1kHz左右的方波信号。在将探头接至5脚,测得500Hz左右的方波信号。在晶振处可以测得32.7KHz左右的信号(很遗憾忘记拍照记录波形)。因此振荡电路正常工作。 安装所有的芯片,接通电源,电源电路指示灯亮,数码管亮,显示小时的两个数码管显示18,显示分钟的两个数码管显示88,显示秒的两个数码管从零开始以1Hz的频率计数。秒数码管的变化说明秒计数正确,分钟和小时则说明了我们在设计中忽略了自启动问题。通过校时、校分按键调节小时和分钟数合适。 当秒到“59”后,两数码管变为0,同时分钟位加1,说明秒到分钟的逻辑正确。 长按校分按钮,可以看到两个分钟的数码管显示按60进制以秒计数,到达59后小时加1,说明分钟模块正常工作。 长按校时按钮,小时以1Hz频率实现112计数,小时模块正常工作。 主体电路数字钟正常工作。 在测试按钮短按实现快校时时,发现短按校时按钮,小时显示有可能不变、或有可能乱跳,如从12跳到6跳到2;校分按钮短按时有不变情况,在校分计数超过40后经常直接置零;并且校分按钮会影响到小时的显示;长按时按键按下和松开时也会影响计数变化。这可能与按键开关的抖动有关系;在测试过程中还发现PCB板的抖动也会影响到数码管显示。 开关防抖动与上拉电阻与并联电容组成的RC电路有关,所以通过改变电容电阻的值来增大RC电路的时间常数。我们把104的电容换成220uF的电容,使RC电路的时间常数在100ms左右,焊接时注意电容的正负极。但是改变电容后按键短按校时校分情况并没有明显改变。最后我们决定将按键开关换成拨码开关来得到电平,通过1Hz信号来校时。换成拨码开关后,打开拨码开关后小时、分钟能够正常计数。但是拨码开关与底座有些接触不良,拨动开关时也有可能有抖动,因此拨动拨码开关时需要小心,固定电路板和拨码开关拨动开关可以正常工作。在调节校时、校分时曾经在板子后方接一个电容,并接过示波器,这个过程中分钟数码管曾突然不显示,按校时、校分按钮并不能使其恢复正常。后发现电路板上分钟电路用到的74LS390非常烫,可能已被烧坏。拆下74LS390后用万用表测试插座上各个管脚的电压,发现电压并没有异常情况,接地脚与电源地直接的电压为0V左右。检查电路板电路没有发现问题。猜测可能背后接电容和示波器测波形时可能有短路等情况发生导致74LS390烧坏。更换74LS390后,电路正常工作,390有稍微发热但不会发烫,390接地脚电压与电源地相同,可以正常使用。调节闹钟功能。 闹钟电路通过拨码开关设置闹钟时间。 首先确定电路板上从左到右四个开关顺序按照小时的十位、个位,分钟的十位、个位排列,之后按照当前时间设置拨码开关的数值。此处输入分别为数码管上显示数字的二进制编码,打开闹钟开关后发现喇叭并没有响。检查原理图和电路板,发现每个拨码开关的高位到低位是从右向左的,重新调整拨码开关的拨码后,喇叭持续发出1kHz的声音。关闭闹钟电路的控制开关后声音停止,在同一分钟内,再次打开控制开关,仍然发出声音,当分钟改变时,声音停止。说明闹钟电路正常工作。 调试过程中,应该注意控制开关的作用。由于设计电路的原因,控制开关有两个拨码开关接入状态,左数第一个与电源相接,第二个与地相接,当第二个开关未接通(0)时不论第一个拨码开关接通与否输入都为高电平(1),闹钟电路工作;当状态为01时,闹钟电路控制开关处于打开状态,相当于闹钟电路不工作。但是如果同时使两个开关状态处于“ON”状态,电源直接与地相接,整个电路都被短路,停止工作。因此调试时应小心不能同时拨开两个开关。调节仿广播台报时功能 首先通过校分按钮使分钟显示为59分,当秒数达到50后,每逢奇数秒数会响一低音声音,持续一秒钟,到达59分响一高音。实现来四声低音一声高音的仿广播电台报时功能。该电路能够正常工作。调节仿广播台报时功能 打开该电路模块的控制开关后,发现喇叭一直发出一秒一响的声音。电路存在问题。 找到该模块的电路,与原理图对照的过程中发现有一网络名写错,在最后版本的原理图中没有改正过来。我们将电路板上相连的LD线用小刀刮断,通过导线将正确的两个相连的管脚连接后,接通电源,在非整点时喇叭不再发声。 因为该电路是在小时数变化时工作,所以我们只需要通过校时开关改变小时数,而不需要将数字钟调至整点来测试电路。 测试过程中,首先我们将时间调至整点,此时仿广播电台报时与整点报时接连工作,我们在数整点报小时数时发现少一声认为可能两功能报时在整点处重叠。 之后再改变校时按钮后,听报小时数是正常的。但多次测试后,发现报小时数的声音普遍比当前的小时数少一声。并且在121过程中,小时数报了12声。这说明该电路中存在竞争冒险现象,置数信号LD1比置数要先到达减法计数器导致电路报了之前的小时数,我们通过接入电容来增加LD1所在电路的延迟时间,使置数先传到减法器后再有置数信号的变化。在LD1的输出端与计数器74LS191的置数管脚之间并联一个104电容,注意焊接时使电容管脚与其他管脚不相接,以免发生短路情况。并联电容后再次测试,发现所有时间的整点报小时数功能所报声音数都正常。仿广播电台报时模块能够正常工作。六、讨论、心得李晓杰:在本次实验过程我主要承担的工作有闹钟电路和电源电路的设计,利用Proteus对电路进行仿真并修改电路,协助进行电路板的安装,与组员一起进行电路的调试。 在确定实验项目后,首先对给出的电路原理进行理解掌握。在学习过程中,发现数字钟的显示是一一分开的,因此每一个个位、十位都可以看成一个单独的计数器,而不能整体地看成秒钟和分钟是60进制而小时是从1计数到12的11进制计数器,因为这样不利于数码管每一位的显示,超过9的数无法通过7段译码器使数码管有显示数值。另外,整点报小时数电路中通过D触发器来实现减法计数器和置数状态的转换也值得学习。原理部分也加深了我对边沿触发的理解。 在设计闹钟电路时,运用了拨码开关拨二进制数来实现闹钟时间的设定,又用数值比较器来确定数字钟到达了设定时间。在设计过程,要注意TTL门电路中输入悬空时输入的是高电平,所以设计电路时要注意添加接地,同时也要加电阻。我们在设计闹钟电路的控制开关时经过多次修改,与数值比较器相连设置时间的拨码开关电路在此处仿真会出现问题,最终我们确定用两个拨码开关一个接电源一个接地实现控制作用。 电源电路能使812V左右的电压转换为稳定的5V左右的电压,提供了稳压电源,因此电源输入时可能有的变化使提供的电压造成太大的影响,能保证电路的正常工作。 在电路仿真过程中,我们学习了Proteus软件的使用。Proteus在绘制出电路原理图后可以很方便地进行仿真,同时还可以提供激励电源和虚拟的示波器,方便我们观察电路中的时序变化图和仿真的波形图。在用Proteus仿真振荡、分频电路中,发现晶振不能起振,在网上查询发现这个问题很普遍,Proteus仿真振荡电路是一个短板,我们可以直接设置CD4060的振荡频率为32768Hz来实现振荡电路的观察,但是此时仿真会提示CPU负载达到99100%使仿真时间与实际时间相差非常大,时间变化得非常慢,并且在示波器上无法显示波形。我们通过对显示出的红蓝块指示高低电平经过一段时间观察可以看出能得到1Hz的信号。 在后续仿真中,我们不加入振荡电路,而通过给予激励电源来提供输入信号。在主体电路调试中发现了小时电路变化至7时就发生了进位,通过示波器观察波形发现因为从7(0111)到8(1000)存在着1变0,0变1的情况使LD瞬间有低电平,而将置数电路改成在同时满足1001情况下置数可以解决问题。后来发现将7400改为74LS00后就不会存在这个问题。 在仿真过程学习了Proteus软件的使用方法,也对数字电路的内容加深了理解。软件的仿真与实际还是存在差别的,并且每个软件的长处和优点都不一样,我们要根据电路功能选择合适的软件进行仿真。而我们在计数器的设计时,置数电路中只考虑置数数字的1信号,只将1信号对应的网络接至与非门而不考虑0信号对应的网络,是因为计数是由高到低有顺序的,而仿真告诉我们这样做可能会在实际电路中遇到问题;7400和74LS00也说明这个问题的存在也与不同类型的芯片有关系。 调试过程加深了我对各个芯片作用的理解,也积累了调试和修改电路的经验。我们在调试中也遇到了很多问题,首先电路在设计绘制时有一网络名写错,在修改时我们将连线断开后用导线重新连线解决了问题。在实际电路调试中,我们也遇到了竞争冒险的问题,通过增加电容延时的方法来解决问题。在调试过程中,理解了增加并联电容通过电容的充放电来延迟电平达到的时间来达到延迟目的。我们也对开关防抖动电路加深了理解,开关防抖动是通过一个RC电路来减轻开关抖动产生的时间很短的脉冲尖刺等造成电路的变化,可以通过R、C来改变时间常数达到防抖动。 这次实验帮助我们对数字电路的知识进行复习和加深理解,数字电路的理论多数是逻辑问题,当逻辑正确时,实际电路中会遇到的竞争冒险、开关抖动、尖刺等现象,在实验过程中更清晰地展现在我们面前,也让我们掌握对这些问题的解决方法。另外,我觉得我们在设计原理图和绘制PCB板时对后续问题的预见和为调试过程做准备的意识有待增强,我们可以提前增加多余的引脚方便我们接示波器等设备对波形进行测量。这是我们需要提高的能力。张晨靖:通过这次实验,我学习了中规模集成电路如何设计制作数字电路系统,了解了数字钟的基本功能和扩展功能的设计实现方法,学会使用protues ISIS软件进行电路的仿真以及仿真出错后怎样快速寻找问题原因并进行修调,同时进一步熟练了AD软件的使用和电路板的安装调试。在此次实验中,我们小组三个组员都有各自的分工,我主要负责答辩ppt的准备、电路的仿真分析和部分电路的修改以及最后的电路调试等。在进行电路仿真的过程中,由于是第一次使用protues ISIS软件,我一开始还不太熟悉软件的操作方法和功能。开始的时候我认为在AD中已经绘制完成的原理图应当存在某种方法可以直接兼容至ISIS使用而无需重新绘制,后来查询了各种资料,发现ISIS的电路图可以在AD中打开,而AD中的原理图无法使用ISIS打开,所以最后我们决定重新绘制一遍原理图。在protues中画好原理图后,我们开始进行电路仿真。但仿真一开始,就立刻出现了问题,电路的分、秒显示和进位都正确,但是小时的计数功能在进制却有错误,出现了满7复0的情况,即状态为012345671011120。我们分析错误原因,观察仿真显示的高低电平,发现D触发器的输入没有任何变化,但输出却会自行变化,我们知道,因为D触发器的下一位输出状态是取决于上一位输入的,所以对于这一现象的发生完全不能理解,另外,74191计数器的状态转换也存在问题,当输出状态达到0111时,下一状态就会变成0000,即高位一直无法出现1状态。在请教过老师之后,老师建议我们在仿真电路中添加示波器观察波形,于是我们在H11(74191计数器的Q1)、H12(74191计数器的Q2)、H13(74191计数器的Q3)和LD四处防止了示波器探针,并再次执行仿真,这一次我们通过观察波形发现了问题所在。当0111转换为1000状态时,Q3从0变成1,Q0、Q1、Q2则应“同时”从1变成0,电路中出现了竞争冒险现象,而原本的进位信号是Q3=1,Q0=1,在状态改变的过程中出现了7直接进位的情况,而我们之前观察到的的触发器输入没有变化,输出却发生了变化的现象也找到了原因,是因为我们开始观察电平高低变化的方法无法显示出电路波形的跳变,即当信号快速变化又快速跳回时,肉眼是看不到电平有所变化的,而我们采用示波器就可以很明显地看到这一现象了。分析出电路问题原因后,我们也很快地找到了解决问题的方法,将原本的进位信号Q3=1,Q0=1改为Q3=1,Q2=0,Q1=0,Q0=1,这样只有四位到达稳定状态后,才会产生进位信号,再次仿真就发现功能已经可以正确实现了。之后的仿真都比较顺利,在获得了正确的仿真结果后,我们心里也变得有底,觉得电路板焊接完成后应该也不会出现大的问题,但真正安装完成电路板进行调试时还是出现了一些问题。调试的第一天上午,我们的电路板的功能基本还正确,但下午回来后再进行调试一段时间后,却发现数字钟的分突然不显示了,并且芯片U22发烫非常严重,后来我们找老师更换了一块芯片,发现数字钟工作一段时间之后芯片还是会微微发热,怀疑是电路哪里存在短路问题,但是测量芯片接地和连接VCC的管脚,发现电压是正常的,直观来看电路板的器件焊接也没有明显问题,所以一直也没有找到芯片发热的具体原因,好在之后的调试我们会时常留意U22的温度,没有再出现严重发烫的问题。另外数字钟还有一个问题,就是整点报时功能不准确,到达1点时会报时12声,2点会报时1声,3点会报时2声等等,以此类推。我们分析认为,出现这种整点不准确的现象,原因应该是逻辑控制电路的与非门延时时间不够,也产生了竞争冒险现象,查询资料和讲义后我们觉得可以直接接入一个小电容,延长延时获得正确的报时数,在接入电容之后,这一问题得到了解决。在板子的装调过程中,我们发现了之前电路的设计上存在一些细节问题,很多实际电路中可能存在的细节在先前的设计中没有考虑到。比如部分电容的封装选择不合适,导致焊接时接入不便,也影响了电路的美观,还有校时电路的滤波电容距离主体较远,对于抖动的消除作用很不明显,另外,定时电路的拨码开关排布也很不方便操作,我们定时电路拨码开关的排布十位个位顺序和表示某位数字的二进制高低位是相反的,导致调节定时时刻不方便等,这让我更加深刻地意识到,电路板的设计是一个不断调整不断完善的过程,需要考虑到各种实际情况,才能设计出美观实用的电路板。另外,我们在调试过程中不断的发现问题、寻找原因、探索解决方法,进一步完善电路板的功能,这一过程需要足够的耐心和严谨,有时解决一个问题需要尝试多种方法,寻找最佳方案,才能最终获得一个功能比较健全的电路板,获得一个自己满意的结果。陈肖苇: 这次实验主要担任的工作是原理图主体部分以及两个扩展部分的绘制,PCB的全部设计以及修改过程,PCB的安装与焊接以及电路板的调试几个过程,下面我讲分块讲一下我在几个方面的心得体会:PCB版图的设计与修改为了节约时间考虑,所以在原理图绘制完成之后,PCB版图就和原理图的仿真同步进行了,但是由于一些细节上的原因,导致提前进行版图设计并没有很好的提高时间利用率。PCB版图的绘制主要包括了元器件的导入与检查,排版,手动布线与自动布线,手动布线更改,以及原理图更改逻辑设计之后的大改和经过老师检查之后的大改几部分组成。首先第一步就是进行元器件的导入,但是导入之后,经过元器件的对比检查之后,发现一些元器件的封装不对,或者是一些元器件甚至没有选择封装,于是经过了更改之后,继续进行下面的工作。接下来,进行的是元器件的排版工作。首先最容易想到的就是将数码管显示器即数字钟的显示部分放到板子的最上方,这样可以一眼就看到整个电路的工作性质;其次就是想到了要将手动校时和闹钟开关等按键以及开关放在板子的最下面,方便进行操作;至于其它的

    注意事项

    本文(数字电子钟实验报告(共36页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开