欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初中数学题库试题考试试卷 测2.doc

    • 资源ID:30262050       资源大小:192.50KB        全文页数:12页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初中数学题库试题考试试卷 测2.doc

    1(2011义乌市)已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4设顶点为点P,与x轴的另一交点为点B(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MNx轴,交PB于点N将PMN沿直线MN对折,得到P1MN在动点M的运动过程中,设P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒求S关于t的函数关系式2(2011达州)如图,已知抛物线与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连接AC(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;(3)抛物线对称轴上是否存在一点M,使得SMAP=2SACP?若存在,求出M点坐标;若不存在,请说明理由3(2011鞍山)如图,在平面直角坐标系中,正方形ABCD的边长为,点A在y轴正半轴上,点B在x轴负半轴上,B(1,0),CD两点在抛物线y=x2+bx+c上(1)求此抛物线的表达式;(2)正方形ABCD沿射线CB以每秒个单位长度平移,1秒后停止,此时B点运动到B1点,试判断B1点是否在抛物线上,并说明理由;(3)正方形ABCD沿射线BC平移,得到正方形A2B2C2D2,A2点在x轴正半轴上,求正方形ABCD的平移距离4(2011深圳)如图1,抛物线y=ax2+bx+c(a0)的顶点为C(l,4),交x轴于AB两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线 PQ上的一动点,则x轴上是否存在一点H,使DG,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MNBD,交线段AD于点N,连接MD,使DNMBMD?若存在,求出点T的坐标;若不存在,请说明理由5(2011泉州)如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点(1)当点A的坐标为(,p)时,填空:p= ,m= ,AOE= 如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形;(2)在图1中,连接EQ并延长交Q于点D,试探索:对m、r的不同取值,经过M、DN三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化请说明理由6(2011长春)如图,平面直角坐标系中,抛物线:y=x22x+3与y轴交于点A,P为拋物线上一点,且与点A不重合连接AP,以AO、AP为邻边作平行四边形OAPQ,PQ所在直线与x轴交于点B设点P的横坐标为m(1)求点Q落在x轴上时m的值(2)若点Q在x轴下方,则m为何值时,线段QB的长取最大值,并求出这个最大值【参考公式:二次函数兴y=ax2+bx+c(a0)图象的顶点坐标为】7.(2011海南)如图,已知抛物线y=x2+bx+9b2(b为常数)经过坐标原点O,且与x轴交于另一点E其顶点M在第一象限(1)求该抛物线所对应的函数关系式;(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作ABx轴于点B,DEx轴于点C当线段ABBC的长都是整数个单位长度时,求矩形ABCD的周长;求矩形ABCD的周长的最大值,并写出此时点A的坐标;当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由8(2011威海)如图,抛物线y=ax2+bx+c交x轴于点A(3,0),点B(1,0),交y轴于点E(0,3)点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行直线y=x+m过点C,交y轴于D点(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标9(2011眉山)如图,在直角坐标系中,已知点A(0,1),B(4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B(1)求抛物线的解析式和点C的坐标;(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;(3)在(2)的条件下,请探究当点P位于何处时,PAC的周长有最小值,并求出PAC的周长的最小值10(2011南充)抛物线y=ax2+bx+c与x轴的交点为A(m4,0)和B(m,0),与直线y=x+p相交于点A和点C(2m4,m6)(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当PQM的面积最大时,请求出PQM的最大面积及点M的坐标11(2011河南)如图,在平面直角坐标系中,直线与抛物线交于AB两点,点A在x轴上,点B的横坐标为8(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点AB重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG随着点P的运动,正方形的大小、位置也随之改变当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标12(2011本溪)如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE岁点Q运动)(1)求这条抛物线的函数表达式;(2)设正方形QCDE的面积为S,P点坐标(m,0)求S与m之间的函数关系式;(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH(正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GP和正方形QCDE的边EQ落在同一条直线上则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由

    注意事项

    本文(初中数学题库试题考试试卷 测2.doc)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开