欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    相似三角形专业题材讲义(二).doc

    • 资源ID:3030947       资源大小:3.67MB        全文页数:24页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    相似三角形专业题材讲义(二).doc

    .相似三角形专题讲义【教学目标】认识相似图形及相似三角形【教学重点】 相似三角形的性质及判定【教学难点】 相似三角形的性质及判定的应用【教学内容】 第1讲 线段的比及平行线分线段成比例定理线段的比一、两条线段的比:同一长度单位下两条线段长度的比叫两条线段的比。二、比例尺:在地图或工程图纸上,图上距离与实际距离的比,叫做这幅图的比例尺。三、成比例线段:1.比例线段:四条线段a,b,c,d中,如果,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。2.比例中项:如果(或),则b叫做a、c的比例中项。四、比例的性质:1.比例的基本性质:如果,那么。2更比性质:如果,那么。3反比性质:如果,那么。4合(分)比性质:如果,那么。5等比性质:如果,那么。【重难点高效突破】例1.(1)已知线段AB=2.5m,线段CD=400cm,则线段AB与CD的比为_.(2)已知1,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该为多少?例2.(1)在1:50000的地图上的A、B两地的距离是15cm,则A、B两地的实际距离是_km.(2)在比例尺为1:n的某市地图上,规划出一块长5cm2cm的矩形工业区,则该工业区的实际面积是 平方米.例3.(1)已知.(2)已知例4.已知xyz=345,求的值;若x+y+z=6,求x、y、z.例5.知一次函数y=kx-1中,比例系数k满足,求直线y=kx-1与x轴交点坐标.【素质能力测试】A组一、选择题(每小题3分,共30分)1.已知一矩形的长a=1.35m,宽b=60cm,则ab的值为( )(A)9400 (B)940 (C)94 (D)9042.下列线段能成比例线段的是( )A.1cm,2cm,3cm,4cm B.1cm,cm,2cm,2cm C.cm,cm,cm,1cm D.2cm,5cm,3cm,4cm3.如果线段a=4,b=16,c=8,那么a、b、c的第四比例项d为( )(A)8 (B)16 (C)24 (D)324.已知,则的值为( )(A) (B) (C) (D)5.在比例尺为138000的南京交通游览图上,玄武湖隧道长约为7cm,它的实际长度约为( )(A)0.226km (B)2.66km (C)26.6km (D)266km6.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是( )(A)12米 (B)11米 (C)10米 (D)9米7.已知点C是AB的黄金分割点(AC >BC),若AB=4cm,则AC的长为( )(A)(22)cm (B)(6-2)cm (C)(1)cm (D)(3-)cm8.若D、E分别是ABC的边AB、AC上的点,且=,那么下列各式中正确的是( )(A)= (B)= (C)= (D)=9.若,且a+b+c0,则k的值为( )(A) -1 (B) (C) 1 (D) - 二、填空题(每小题3分,共30分)1.在x6= (5 +x)2 中的x= ;2.若, 则 .3.若a3 =b4 =c5 , 且a+b-c=6, 则a= ,b= ,c= .4.已知xyz= 345 , 且x+y+z=12, 那么x= ,y= ,z= .5.若, 则.6.已知x4 =y5 = z6 , 则 xyz = , (x+y)(y+z)= .7.若, 则.8.已知,线段= 2 cm,cm,则线段a、c的比例中项b是 . 三、解答题(每小题8分,共40分)1.已知,求下列各式的值:(1) (2).2.若ABC 的三内角之比为123,求ABC的三边之比.3.已知a、b、c为ABC的三边,且a+b+c=60cm,abc=345,求ABC的面积.平行线分线段成比例定理及其推论基本应用【知识点梳理】平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。基本图形:1、平行线分线段成比例定理的基本图形:(型、型)CF平移至过点DCF平移至过点A 一招制胜:基本图形分离法,分离出基本图形,或者通过辅助线,构造基本图形!例题讲解:例1. 如图,在中,且,若,求的长。例2已知:在中,且(1)求的长; (2)求证:例3 如图,已知,若,求证:. 例4 如下图,BD:DC=5:3,E为AD的中点,求BE:EF的值. 例5 如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FGBE交AE于G,求证:GFFB课堂练习:平行线分线段成比例定理应用题型一、三角形中直接观察寻找基本图形解决问题1已知:如图,求,2已知:在中,平分,与相交于点;,交于点,ABEDCA,求的长。3如图,在四边形中,与相交于点,直线平行于,且与、及的延长线分别相交于点、和.求证:DBGACEF4.已知:,求证:5、已知:,为的中点,.若,求6、已知:,求证:题型二:三角形中构造基本图形解决问题核心辅助线:平行线1已知中,求:2在中,点、分别在边、上,且,直线和的延长线交于点,求(1) (2)3如图(1),在中,是的中点,是上一点,且,连接并延长,交的延长线于,则 .(2)如图(2),已知中,与相交于,则 的值为( )A. B. C. D. 4.已知等腰直角中,、分别为直角边、上的点,且,过、分别作的垂线,交斜边于,求证:家庭作业1(福州市中考题)已知ab31且ab8,则ab 。2(常州市中考题)已知=(n+q0),则 。3一个三角形三边的比为234则这个三角边上的高的比为 。4线段a3,b4,c5则b,a,c的第四比例项是 ,b、c的比例中项是 5.(杭州市中考题)已知=,则的值( )A-5B5C-4D46已知3a5b,下列各式的值在2与3之间的是( )ABCD7已知:如图ABC中,DEBC,BE与CD交于点O,AO与DE、BC分别交于点N、M,求证:(1)=(2)BM=MC,且DN=NE8如图,ACBD,AD和BC相交于点E,EFAC交AB于点F,且ACp,BDq,EFr,(1)试证+=,(2)图中AC20,BD80,试求EF的值。第2讲相似三角形的判定(1)【基础知识精讲】1.相似三角形的预备定理:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似定理的基本图形有三种情况,如图其符号语言:DEBC,ABCADE;2相似三角形的判定判定定理(1):两角对应相等,两三角形相似补充:(1)有一组锐角对应相等的两个直角三角形相似。 (2)顶角或底角对应相等的两个等腰三角形相似。3. 寻找相似三角形的思路(1)、横向三点定形法,要证=,则证明 (2)、纵向三点定形法:如要证=,则证明 【重难点高效突破】例1如图,直线DE分别与ABC的边AB、AC的反向延长线相交于D、E,由EDBC可以推出吗?请说明理由。例2(射影定理)已知:如图,在ABC中,BAC=90,ADBC于D.求证:(1);(2)例3如图,AD是RtABC斜边BC上的高,DEDF,且DE和DF分别交AB、AC于E、F.则吗?说说你的理由. 例4如图,在平行四边形ABCD中,已知过点B作BECD于E,连接AE,F为AE上一点,且BFE=C(1) 求证:ABFEAD;(2) 若AB=4,BAE=30,求AE的长;(3) 在(1)(2)条件下,若AD=3,求BF的长.【素质能力测试】A组一、选择题1如图,ABC经平移得到DEF,AC、DE交于点G,则图中共有相似三角形( )A 3对 B 4对 C 5对 D 6对2如图,已知DEBC,EFAB,则下列比例式中错误的是( )A B C D .3.在矩形ABCD中,E、F分别是CD、BC上的点,若AEF=90,则一定有( )AADEAEF B.ECFAEF C.ADEECF D.AEFABF4.如图,直线l1l2,AFFB=23,BCCD=21,则AEEC是( )A.52 B.41 C.21 D.32(1题图) (2题图) (3题图) (4题图)5.如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形( ) A.1对 B.2对 C.3对 D.4对(5题图) (6题图) (7题图) ( 8题图)6.ABC中,DEBC,且ADDB=21,那么DEBC等于( )A.21 B.12 C.23 D.327.如图,P是RtABC的斜边BC上异于B、C的一点,过点P做直线截ABC,使截得的三角形与ABC相似,满足这样条件的直线共有( )A.1条 B.2条 C.3条 D.4条8.如图,已知DEBC,EFAB,则下列比例式中错误的是( )A. B. C. D.二、填空题1.下列说法:所有的等腰三角形都相似;所有的等边三角形都相似;所有等腰直角三角形都相似;所有的直角三角形都相似.其中正确的是 (把你认为正确的说法的序号都填上).2.如图ABC中,BC=a.(1)若AD1=AB,AE1=AC,则D1E1= ;(2)若D1D2=D1B,E1E2=E1C,则D2E2= ;(3)若D2D3=D2B,E2E3=E2C,则D3E3= ;(4)若Dn-1Dn=Dn-1B,En-1En=En-1C,则DnEn= .3.已知:如图,ABC中,B=C=30.请你设计三种不同的分法,将ABC分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似三角形但不全等的直角三角形.请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数或记号,并在各种分法的空格线上填空.(画图工具不限,不要求写出画法,不要求说明理由). 分法一 分法二 分法三分法一:分割后所得的四个三角形中, ,Rt Rt .分法二:分割后所得的四个三角形中, ,Rt Rt .分法三:分割后所得的四个三角形中, ,Rt Rt .三、解答题1.如图,ABC中,BD是角平分线,过D作DEAB交BC于点E,AB=5cm,BE=3cm,求EC的长. 2.如图,在梯形ABCD中,ADBC,BAD=90,BDDC.(1)ABD与DCB相似吗?请说明理由.(2)如果AD=4,BC=9,求BD的长.3.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.ADQ与QCP是否相似?为什么?B组1.如图,已知AD为ABC的角平分线,AD的垂直平分线交BC的延长线于点E,交AB与F,试判定BAE与ACE是否相似,并说明理由。2.如图,在矩形ABCD中,AB=5cm,BC=10cm,动点P在AB边上由A向B作匀速运动,1分钟可到达B点;动点Q在BC边上由B向C作匀速运动,1分钟可到达C点,若P、Q两点同时出发,问经过多长时间,恰好有PQBD?【课后思考】1.已知:如图所示,D是AC上一点,BEAC,AE分别交BD、BC于点F、G,1=2.则BF是FG、EF的比例中项吗?请说明理由.2.如图,CD是RtABC的斜边AB上的高,BAC的平分线分别交BC、CD于点E、F.ACAE=AFAB吗?说明理由.3.如图,AD是RtABC斜边BC上的高,DEDF,且DE和DF分别交AB、AC于E、F.则吗?说说你的理由. 4.已知零件的外径为25cm,要求它的厚度x ,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OAOC=OBOD=3,CD=7cm.求此零件的厚度x.第3讲 相似三角形的判定(2)【基础知识精讲】1相似三角形的判定判定定理(2):两边对应成比例且夹角相等,两三角形相似判定定理(3):三边对应成比例,两三角形相似2直角三角形相似的判定:在直角三角形中,斜边和一条直角边对应成比例,两直角三角形相似3 相似三角形中的基本图形: (A型,X型) (2)交错型(3)旋转型 (4)母子形【典例剖析】例1如图在44的正方形方格中,ABC和DEF的顶点都在长为1的小正方形顶点上(1)填空:ABC=_,BC=_(2)判定ABC与DEF是否相似?并说明理由。例2. 如图,在ABC中,已知BD、CE是ABC的高,试说明ADEABC。例3如图,已知ABBD,CDBD,AB=6cm,CD=4cm,BD=14cm,点P在BD上由B点向D点移动,当BP等于多少时,ABP与CPD相似?例4.求证:若一个直角三角形的一条直角边和斜边上的高与另一个直角三角形的一条直角边和斜边上的高成比例,那么这两个直角三角形相似例5在三角形ABC中,AB=AC,ADBC于点D,DEAC于点E,M为DE的中点,AM与BE相交于点N,延长AM交BC于点G,AD与BE相交于点F,求证:(1); (2)BCEADM; (3)AMBE. 【素质能力测试】A组1.下列命题中正确的是( )三边对应成比例的两个三角形相似 二边对应成比例且一个角对应相等的两个三角形相似 一个锐角对应相等的两个直角三角形相似 一个角对应相等的两个等腰三角形相似A、 B、 C、 D、2如图D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使ABE和ACD相似的是( )A. B=C B. ADC=AEB C. BE=CD,AB=AC D. ADAC=AEAB3 如图在正方形网格上有6个斜三角形:ABC,BCD,BDE,BFG,FGH,EFK.其中中,与三角形相似的是( )A. (B) (C) (D)4如图,DE与BC不平行,当= 时,ABC与ADE相似。5(烟台)如图,平行四边形 ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使CBFCDE,则BF的长是( )A5 B8.2 C6.4 D1.8(3题图) (4题图) (5题图)5如图,四边形ABCD是平行四边形,AEBC于E,AFCD于F.(1)ABE与ADF相似吗?说明理由.(2)AEF与ABC相似吗?说说你的理由.6已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.ADQ与QCP是否相似?为什么?7如图,在正方形ABCD中,E为AD的中点,EFEC交AB于F,连接FCAEFEFC吗若相似,请证明;若不相似,请说明理由。若ABCD为矩形呢?B组1已知:如图,CE是RtABC的斜边AB上的高,BGAP. 求证:CE2=EDEP. D C P A B2.如图,在直角梯形ABCD中,AB/CD,在AD上能否找到一点P,使三角形PAB和三角形PCD相似?若能,共有几个符合条件的点P?并求相应PD的长。若不能,说明理由。3已知ABC,DCE,EFG是三个全等的等腰三角形,底边BC,CE,EG在同一直线上,且AB=,BC=1,连接BF,分别交AC,DC,DE于P,Q,R(1)求证:BFGFEG,并求出BF的长。(2)观察图形,请你提出一个与点P相关的问题,并进行解答4.如图:AB是等腰直角三角形ABC的斜边,点M在边AC上,点N在边BC上,沿直线MN将MCN翻折,使点C落在AB上,设其落点为P,当P是边AB中点时,求证:;当P不是边AB中点时,是否仍成立?请证明你的结论;5如图所示,在ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y(1)如果BAC=30,DAE=105,试确定y与x之间的函数关系式;(2)如果BAC的度数为,DAE的度数为,当、满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,试说明理由【课后思考】1如图正方形ABCD中,点E,F分别为AB,BC的中点,AF与DE相交于点O,则等于( )A B C D2如图,直线EF交AB、AC于点F、E,交BC的延长线于点D,ACBC,已知,求证:第4讲 相似三角形的性质及其应用【基础知识精讲】相似三角形的性质:相似三角形的对应角相等,对应边成比例相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比相似三角形周长的比等于相似比相似三角形面积的比等于相似比的平方【素质能力测试】例1.(1)两个相似三角形的面积比为,与它们对应高之比之间的关系为_BBBBCDEEAAO(2)题图(5)题图CADDCBBA(4)题图BGFEDAC(3)题图CEFOBAD(2)如图,已知DEBC,CD和BE相交于O,若,则AD:DB=_(3)如图,已知ABCD,BO:OC=1:4,点E、F分别是OC,OD的中点,则EF:AB的值为( )(4)如图,已知DEFGBC,且AD:FD:FB=1:2:3,则A.1:9:36 B.1:4:9 C.1:8:27 D.1:8:36(5)如图,把正方形ABCD沿着对角线AC的方向移动到正方形ABCD的位置,它们的重叠部分的面积是原正方形面积的一半,若AC=,则正方形移动的距离AA是 .OBCDA(6)梯形ABCD中,ADBC,(AD<BC),AC、BD交于点O,若,则AOD与BOC的周长之比为_。例2.如图,在ABC中,DEBC,且SADE :S四边形BCED1:2,BC2。ABCDE求DE的长。例3. 如图所示,已知DEBC,且与ABC的边CA、BA的延长线分别相交于点D、E,F、G分别在边AB、AC上,且AF:FB=AG:GC,求证:AFGAED。 例4. 如图,矩形EFGH内接于ABC,ADBC于点D,交EH于点M,BC20,AM8,ABCDEFMHGSABC1002。求矩形EFGH的面积。例5.ABC中,D为AB上一点,若ABC=ACD,AD=8,DB=6,求AC的长。例6.已知,如图ABC中,BAC=900,AB=AC=1,D为BC上一动点(不与B,C重合),ADE=45(1)求证ABDDCE (2)设BD=x,AE=y,求y与x的函数关系式(3)若ADE为等腰直角三角形时,求AE的长例7.如图,在等腰梯形ABCD中,ADBC,AD=3,BC=7,B=60,P为下底BC上一点(不与B、C 重合),连结AP,过P点作PE交DC于E,使得APE=B.(1)求证:ABPPCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DEEC=53,如果存在,求出BP的长,如果不存在,请说明理由.60AE第7题图PDCB【素质能力测试】A组一.填空(选择)题:1在长度为的线段上找到两个黄金分割点、.则_.2.两个相似三角形的面积比为4:9,那么它们周长的比为_.3若x:y:z=3:5:7,3x2y4z9则xyz的值为_. 4.如图,APD90,APPBBCCD,则下列结论成立的是( ) A .PABPCA B.PABPDA C .ABCDBA D.ABCDCAADE1BC第8题5.一个三角形的各边之比为2:5:6,和它相似的另一个三角形的最大边为24,它的最小边为_.6.顺次连接三角形三边的中点,所成的三角形与原三角形对应边上中线的比是 .7.在坐标系中,已知A(-3,0),B(0,-4),C(0,1),过点C作直线L交x轴于点D,使得以点D、C、O为顶点的三角形与AOB相相似,这样的直线一共可以作出_条. 8、(天府前沿)如图,D、E分别是ABC的边AB、AC上的点,1B,AEEC4,BC10,AB12,则ADE的周长为_ABCDMN第10题9某学生利用树影测松树的高度,他在某一时刻测得15米长的竹竿影长09米,但当他马上测松树高度时,因松树靠近一幢高楼,影子不是全部在地面上,有一部分影子落在墙上,他测得留在地面部分的影长是24米,留在墙上部分的影高是1.5米,则松树的高度为_米10. 如图,C为线段AB上的一点,ACM、CBN都是等边三角形,11. 若AC3,BC2,则MCD与BND的面积比为 。11.顺次连接正方形各边中点所得正方形与原正方形相似,相似比为_, 面积比为_二、解答题:1.一条河的两岸是平行的,在河的这一岸每隔5m有一棵树,在河的对岸每隔50m有一根电线杆,在这岸离开岸边25m处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有两棵树,求河的宽度ABCDE2.已知ABC中,AE、BD为高,若CE:AE=1: ,AB=2,连结DE(1)求DC:BC的值; (2)求DE的长;(3)如果=y,=x(0x3),请用含x的代数式表示y(选作题)B组一填空选择题:1如图,点M是ABC内一点,过点M分别作直线平行于ABC的各边,所形成的三个小三角形1.2.3(图中阴影部分)的面积分别是4,9和49则ABC的面积是 2如图,一张等腰三角形纸片,底边长l5cm,底边上的高长225cm现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A第4张 B第5张 C第6张 D第7张2题图ABCDO3题图 1题图 4题图 3如图,在梯形ABCD中,ADBC,AC、BD交于O点,SAOD:SCOB1:9,则SDOC:SBOC 二解答题:1.如图4,已知:过ABCD的顶点A作一直线分别交BD、CD及BC的延长线于P、Q、R,求证:。BEACD5题图2.如图5,ABC中,D为AC上一点,CD=2DA,BAC=45,BDC=60,CEBD于E,连结AE.(1)写出图中所有相等的线段,并加以说明;(2)图中有无相似三角形,若有,请写出一对,若没有,请说明理由;(3)求BEC与BEA的面积之比.【课外思考】已知:在菱形中,是对角线上的一动点(1)如图甲,为线段上一点,连接并延长交于点,当是的中点时,求证:;(2)如图乙,连结并延长,与交于点,与的延长线交于点若,求和的长

    注意事项

    本文(相似三角形专业题材讲义(二).doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开