2021-2022年收藏的精品资料中考冲刺:代几综合问题巩固练习提高.doc
-
资源ID:30391496
资源大小:380KB
全文页数:14页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022年收藏的精品资料中考冲刺:代几综合问题巩固练习提高.doc
中考冲刺:代几综合问题知识讲解(提高)【巩固练习】一、 选择题1.(2016鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线ABM方向匀速运动,到M时停止运动,速度为1cm/s设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()AB CD2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为( )二、填空题3.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且ABC是直角三角形,则满足条件的C点的坐标为_4.(2016梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是 三、解答题5. 如图,在RtABC中,C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动过点P作PEBC交AD于点E,连接EQ设动点运动时间为t秒(t0)(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行为什么?(3)当t为何值时,EDQ为直角三角形6如图,在平面直角坐标系中,四边形OABC是梯形,OABC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒) (1)求线段AB的长;当t为何值时,MNOC? (2)设CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 7.条件:如下图,A、B是直线l同旁的两个定点问题:在直线l上确定一点P,使PA+PB的值最小方法:作点A关于直线l的对称点A,连接AB交l于点P,则PA+PB=AB的值最小(不必证明)模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点连接BD,由正方形对称性可知,B与D关于直线AC对称连接ED交AC于P,则PB+PE的最小值是;(2)如图2,O的半径为2,点A、B、C在O上,OAOB,AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,AOB=45°,P是AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求PQR周长的最小值8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得CBM沿CM翻折后,点B落在x轴上,记作N点(1)求N点、M点的坐标;(2)将抛物线y=x236向右平移a(0a10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;若点D是线段OC上的一个动点(不与O、C重合),过点D作DEOA交CN于E,设CD的长为m,PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由9.如图,直线y=kx1与x轴、y轴分别交于B、C两点,tanOCB=(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx1上的一个动点当点A运动过程中,试写出AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:当点A运动到什么位置时,AOB的面积是;在成立的情况下,x轴上是否存在一点P,使POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由10.(2015成都)如图,在平面直角坐标系xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由11.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,DMN为等边三角形(点M的位置改变时,DMN也随之整体移动)(1)如图,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由【答案与解析】一、选择题1.【答案】A.【解析】分两种情况:当0t4时,作OGAB于G,如图1所示:四边形ABCD是正方形,B=90°,AD=AB=BC=4cm,O是正方形ABCD的中心,AG=BG=OG=AB=2cm,S=APOG=×t×2=t(cm2),当t4时,作OGAB于G,如图2所示:S=OAG的面积+梯形OGBP的面积=×2×2+(2+t4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A2.【答案】A.三、填空题3.【答案】 (0,0),(0,10),(0,2),(0,8) 4【答案】(2×3n1,0).【解析】点B1、B2、B3、Bn在直线y=2x的图象上,A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,AnBn=4×3n1(n为正整数)OAn=AnBn,点An的坐标为(2×3n1,0)故答案为:(2×3n1,0)三、解答题5【答案与解析】解:(1)能,如图1,点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒,AP=1,BQ=1.25,AC=4,BC=5,点D在BC上,CD=3,PC=AC-AP=4-1=3,QD=BC-BQ-CD=5-1.25-3=0.75,PEBC,解得PE=0.75,PEBC,PE=QD,四边形EQDP是平行四边形;(2)如图2,点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,PQAB;(3)分两种情况讨论: 如图3,当EQD=90°时,显然有EQ=PC=4-t, 又EQAC, EDQADC , BC=5,CD=3, BD=2, DQ=1.25t-2, 解得t=2.5(秒);如图4,当QED=90°时,作EMBC于M,CNAD于N,则EM=PC=4-t,在RtACD中, AC=4,CD=3, AD=,CDA=EDQ,QED=C=90°,EDQCDA, t=3.1(秒)综上所述,当t=2.5秒或t=3.1秒时,EDQ为直角三角形 6.【答案与解析】解:(1)过点B作BDOA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在RtABD中,当时,即(秒)(2)过点作轴于点,交的延长线于点,即,即()由,得当时,S有最小值,且7【答案与解析】解:(1)四边形ABCD是正方形,AC垂直平分BD,PB=PD,由题意易得:PB+PE=PD+PE=DE,在ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A,连接AC,交OB于P,PA+PC的最小值即为AC的长,AOC=60°AOC=120°作ODAC于D,则AOD=60°OA=OA=2AD=;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时PQR周长的最小值等于MN由轴对称性质可得,OM=ON=OP=10,MOA=POA,NOB=POB,MON=2AOB=2×45°=90°,在RtMON中,MN=10即PQR周长的最小值等于108.【答案与解析】解:(1)CN=CB=15,OC=9,ON=12,N(12,0);又AN=OAON=1512=3,设AM=x32+x2=(9x)2,x=4,M(15,4);(2)解法一:设抛物线l为y=(xa)236则(12a)2=36a1=6或a2=18(舍去)抛物线l:y=(x6)236解法二:x236=0,x1=6,x2=6;y=x236与x轴的交点为(6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x236向右平移6个单位得到抛物线l:y=(x6)236;(3)由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则 ,解得 ,y=x16,P(6,8);DEOA,CDECON,;S=a=0,开口向下,又m=S有最大值,且S最大=9.【答案与解析】 解: (1)y=kx1与y轴相交于点C,OC=1;tanOCB=,OB=;B点坐标为:;把B点坐标为:代入y=kx1得:k=2;(2)S=,y=kx1,S=×|2x1|;S=|x|;(3)当S=时,x=,x=1,y=2x1=1;A点坐标为(1,1)时,AOB的面积为;存在满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0)10.【答案与解析】解:(1)令y=0,则ax22ax3a=0,解得x1=1,x2=3点A在点B的左侧,A(1,0),如图1,作DFx轴于F,DFOC,=,CD=4AC,=4,OA=1,OF=4,D点的横坐标为4,代入y=ax22ax3a得,y=5a,D(4,5a),把A、D坐标代入y=kx+b得,解得,直线l的函数表达式为y=ax+a(2)设点E(m,a(m+1)(m3),yAE=k1x+b1,则,解得:,yAE=a(m3)x+a(m3),SACE=(m+1)a(m3)a=(m)2a,有最大值a=,a=;(3)令ax22ax3a=ax+a,即ax23ax4a=0,解得x1=1,x2=4,D(4,5a),y=ax22ax3a,抛物线的对称轴为x=1,设P1(1,m),若AD是矩形的一条边,由AQDP知xDxP=xAxQ,可知Q点横坐标为4,将x=4带入抛物线方程得Q(4,21a),m=yD+yQ=21a+5a=26a,则P(1,26a),四边形ADPQ为矩形,ADP=90°,AD2+PD2=AP2,AD2=4(1)2+(5a)2=52+(5a)2,PD2=4(1)2+(5a)2=52+(5a)2,4(1)2+(5a)2+(14)2+(26a5a)2=(11)2+(26a)2,即a2=,a0,a=,P1(1,)若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,3a),m=5a(3a)=8a,则P(1,8a),四边形ADPQ为矩形,APD=90°,AP2+PD2=AD2,AP2=1(1)2+(8a)2=22+(8a)2,PD2=(41)2+(8a5a)2=32+(3a)2,AD2=4(1)2+(5a)2=52+(5a)2,22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,a0,a=,P2(1,4)综上可得,P点的坐标为P1(1,4),P2(1,)11.【答案与解析】解:(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上.(2)成立证明:连结DE,DF ABC是等边三角形, AB=AC=BC又D,E,F是三边的中点, DE,DF,EF为三角形的中位线DE=DF=EF,FDE=60°又MDF+FDN=60°, NDE+FDN=60°, MDF=NDE 在DMF和DNE中,DF=DE,DM=DN, MDF=NDE,DMFDNE MF=NE (3)画出图形(连出线段NE), MF与EN相等的结论仍然成立(或MF=NE成立)