2021-2022学年北师大版九年级数学下册第二章二次函数专项测评练习题(含详解).docx
-
资源ID:30628876
资源大小:803.47KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版九年级数学下册第二章二次函数专项测评练习题(含详解).docx
北师大版九年级数学下册第二章二次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线向右平移2个单位,再向上平移3个单位得到的抛物线是( )ABCD2、下列各式中,是的二次函数的是( )ABCD3、已知二次函数ya(x+1)2+b(a0)有最大值1,则b的大小为()A1B1C0D不能确定4、若关于x的二次函数,当时,y随x的增大而减小,且关于y的分式方程有整数解,则符合条件的所有整数a的和为( )A1BC8D45、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 26、下列关系式中,属于二次函数的是()AyByCyDyx32x7、如图,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点B在点(0,2)与点(0,3)之间(不包括这两点),对称轴为直线x2有以下结论:abc0;5a+3b+c0;a;若点M(9a,y1),N(a,y2)在抛物线上,则y1y2其中正确结论的个数是( )A1B2C3D48、若抛物线与轴没有交点,则的取值范围是( )ABCD9、如图,抛物线与x轴交于点,对称轴为直线结合图象分析下列结论:;一元二次方程的两根分别为,;若为方程的两个根,则且其中正确的结论有( )个A2B3C4D510、已知二次函数yax2+bx+c的部分图象如图所示,则关于x的一元二次方程ax2+bx+c0的解为()Ax13,x20Bx13,x21Cx13,x21Dx13,x21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线和抛物线,当时,x的取值范围是_2、当0时,将二次函数yx2x(0x)的图象G,绕原点逆时针旋转得到图形G均是某个函数的图象,则的最大值为 _3、抛物线的顶点坐标是_4、如图,正方形的边长为4,以正方形对角线交点为原点建立平面直角坐标系,作出函数yx2与yx2的图象,则阴影部分的面积是_5、二次函数,自变量x与函数y的对应值如表:x0123y500512则当时,y满足的范围是_三、解答题(5小题,每小题10分,共计50分)1、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)506070销售量y(千克)1009080(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?2、如图,抛物线yax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P是抛物线上一动点,当PCBBCO时,求点P的横坐标3、在平面直角坐标系xOy中,是抛物线上两点(1)将写成的形式;(2)若,比较,的大小,并说明理由;(3)若,直接写出m的取值范围4、如图,抛物线与轴交于,两点,与轴交于点,抛物线的顶点为,连接,为线段上的一个动点(不与、重合),过点作轴,交抛物线于点,交轴于点(1)求抛物线的解析式;(2)当时,求点的坐标;(3)连接、,当的面积等于的面积时(点与点不重合),求点的坐标;(4)在(3)的条件下,在轴上,是否存在点,使为等腰三角形,若存在,请直接写出点的坐标,若不存在,请说明理由5、在平面直角坐标系xOy中,抛物线的对称轴是直线(1)用含a的式子表示b;(2)求抛物线的顶点坐标;(3),是抛物线上两点,记抛物线在M,N之间的部分为图象G(包括M,N两点),图象G上任意两点纵坐标差的最大值记为h,若存在m,使得,直接写出a的取值范围-参考答案-一、单选题1、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点式写出即可抛物线的平移口诀:自变量加减:左加右减,函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”2、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点3、B【分析】根据二次函数的性质,由最大值求出b即可【详解】解:二次函数ya(x+1)2+b(a0),抛物线开口向下,又最大值为1,即b1,b1故选:B【点睛】本题主要考查了二次函数的图象性质,准确分析判断是解题的关键4、A【分析】根据抛物线的性质,得到;整理分式方程,得到y=,根据分式方程有整数解,且y=1时,对应a值不能取,确定符合题意的a值,最后求和即可【详解】关于x的二次函数,当时,y随x的增大而减小,即a2;,(a-1)y=-4,当y=1时,a=-3,此值要舍去;y=,关于y的分式方程有整数解,1-a=±1;1-a=±2;1-a=±4;a=0或a=2;a=-1或a=3;a=-3或a=5;a2,且a-3,a=0或a=2或a=-1;符合条件的所有整数a的和-1+0+2=1,故选A【点睛】本题考查了二次函数的对称性,分式方程的整数解,正确判定抛物线对称轴的属性,正确求得整数解的a值是解题的关键5、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键6、A【分析】二次函数为形如的形式;对比四个选项,进而得到结果【详解】解:A符合二次函数的形式,故符合题意;B中等式的右边不是整式,故不是二次函数,故不符合题意;C中等式的右边分母中含有,但是分式,不是整式,故不是二次函数,故不符合题意;D中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A【点睛】本题考察了二次函数的概念解题的关键与难点在于理清二次函数的概念7、C【分析】根据二次函数的图象与系数的关系即可求出答【详解】解:由开口可知:a0,对称轴 b0,由抛物线与y轴的交点可知:c0,abc0,故正确;对称轴x=, b=-4a,5a+3b+c=5a- 12a+c=-7a+c,a0,c0,-7a+c0,5a+3b+c 0,故正确;x=-1,y=0,a-b+c=0, b=-4a,c=-5a,2c3,2-5a3,a,故正确;点M(-9a,y1),N(,y2) 在抛物线上,则 当时,y1y2当-时,y1y2故错误故选: C【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型8、D【分析】根据题意得令,得,则,即可解得答案【详解】解:根据题意得令,解得故选:D【点睛】本题考查了抛物线与轴的交点:对于二次函数(,是常数,),令后,得到关于的一元二次方程,的情况决定了一元二次方程根的情况,相应的决定了抛物线与轴的交点个数9、C【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,又x=-=1,有2a+b=0,所以3a+c=0,而a0,c0,因此2a+c0,故不正确;由cx2+bx+a=0可得方程的解为和,抛物线与x轴交点(3,0),(-1,0),即方程ax2+bx+c=0的两根为x1=3,x2=-1;, 当时, 3a+c=0,c=-3a,cx2+bx+a=0的两根,x2=-1,故正确;抛物线y=ax2+bx+c与x轴交点(3,0),(-1,0),且a0,因此当y=-2时,相应的x的值大于3,或者小于-1,即m-1,n3,故正确;综上所述,正确的结论有:共4个,故选:C【点睛】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键10、D【分析】关于x的一元二次方程ax2+bx+c=0(a0)的根即为二次函数y=ax2+bx+c(a0)的图象与x轴的交点的横坐标【详解】解:根据图象知,抛物线y=ax2+bx+c(a0)与x轴的一个交点是(-3,0),对称轴是直线x=-1设该抛物线与x轴的另一个交点是(x,0)则=-1,解得,x=1,即该抛物线与x轴的另一个交点是(1,0)所以关于x的一元二次方程ax2+bx+c=0(a0)的根为x1=-3,x2=1故选:D【点睛】本题考查了抛物线与x轴的交点解题时,注意抛物线y=ax2+bx+c(a0)与关于x的一元二次方程ax2+bx+c=0(a0)间的转换二、填空题1、【分析】当时,一次函数的图像在二次函数的图像的下方,利用函数图像可以得到自变量的取值范围,即不等式的解集【详解】解:联立方程组,解得,直线与抛物线的交点为: 当时,一次函数的图像在二次函数的图像的下方,所以此时:故答案为:【点睛】本题考查的是利用图像法求不等式的解集,掌握利用二次函数与一次函数的图像写不等式的解集是解题的关键2、【分析】根据题意,找到图象G的切线,进而根据旋转的性质即可求得的最大值【详解】解:将二次函数yx2x(0x)的图象G,逆时针旋转得到图形G均是某个函数的图象,设过原点的直线当yx2x,存在唯一交点时即解得设为上一点,过点作轴,则当图象旋转时,与轴相切,符合函数图象,故即故答案为:30°【点睛】本题考查了旋转的的性质,抛物线与直线交点问题,解直角三角形,理解题意求得直线与轴的夹角是解题的关键3、【分析】利用配方法把函数解析式化为顶点式,求出顶点坐标即可【详解】解:(x1)2+1,顶点坐标是;故答案为:【点睛】本题主要考查二次函数的图象和性质,化一般式为顶点式是解题的关键,注意数形结合思想的应用4、8【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,而正方形面积为16,由此可以求出阴影部分的面积【详解】解:函数yx2与yx2的图象关于x轴对称,图中的阴影部分的面积是图中正方形面积的一半,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8故答案为8【点睛】本题考查的是关于x轴对称的二次函数解析式的特点,解答此题的关键是根据函数解析式判断出两函数图象的特点,再根据正方形的面积即可解答5、【分析】运用待定系数法求出二次函数解析式,判断图象开口方向,求出对应的函数值,从而可判断出y的取值范围【详解】解:取(-3,0),(-2,-3),(0,-3)代入,得 解得, 函数图象开口向上,对称轴为直线,顶点坐标为(-1,-4)当时, 当时,y满足的范围是故答案为:【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解数形结合是解题的关键三、解答题1、(1);(2)批发商若想获得4000元的利润,应将售价定为每千克元;(3)产品每千克售价为元时,批发商获得的利润w(元)最大.【分析】(1)设一次函数为 把代入,再列方程组,解方程组即可;(2)由每千克商品的利润乘以销售的数量=4000,列方程,再解方程并检验即可得到答案;(3)由总利润等于每千克商品的利润乘以销售的数量,建立二次函数关系式为:再利用二次函数的性质可得答案.【详解】解:(1)由题意设: 把代入可得:,解得: 所以:y与x的函数关系式为: (2)由题意得: 整理得: 解得: 该产品每千克售价不得超过90元,所以不符合题意,取 即批发商若想获得4000元的利润,应将售价定为每千克元.(3)由题意得: 有最大值,当时, 所以产品每千克售价为元时,批发商获得的利润w(元)最大.【点睛】本题考查的是利用待定系数法求解一次函数的解析式,一元二次方程的应用,列二次函数关系式,二次函数的性质,掌握“总利润等于每千克商品的利润乘以销售的数量”是解本题的关键.2、(1);(2)或【分析】(1)由题意代入A(2,0),B(8,0)两点求出a、b的值,即可得出抛物线的解析式;(2)根据题意分点P在BC下方的抛物线上和点P在BC上方的抛物线上两种情况,结合全等三角形的判定与性质以及相似三角形的判定与性质进行分析即可得出答案.【详解】解:(1)由题意代入A(2,0),B(8,0)两点,可得:,解得:,所以抛物线的解析式为:;(2)当点P在BC下方的抛物线上时,此时PCBBCO 即CP平分BCO,如图,作CP平分BCO,交x轴于点D,过D作垂足为E,CP平分BCO,,设,,勾股定理可得:,即,解得:,即,D的坐标为(3,0),设CD的解析式为:,代入C、D可得:,解得:,所以CD的解析式为:,P为直线CD与抛物线的交点,联立可得:,解得:(舍去)或,即的横坐标为,当点P在BC上方的抛物线上时,此时PCBBCO,如图,作PCBBCO交抛物线于点P,延长DE交CP于点F,过E作EHx轴交于点H,PCBBCO,,可得,设F为,由可得,解得:,即F为,设CF的解析式为:,代入C、F可得:,解得:,所以CD的解析式为:,P为直线CF与抛物线的交点,联立可得:,解得:(舍去)或,即的横坐标为,综上所述的横坐标为或.【点睛】本题考查二次函数的综合问题,熟练掌握待定系数法求二次函数解析式和全等三角形的判定与性质以及相似三角形的判定与性质和角平分线性质是解题的关键.3、(1);(2);(3)或【分析】(1)利用完全平方公式可直接得出;(2)当时,确定函数解析式,将点,代入确定,然后比较大小即可;(3),代入函数解析式,令,当时,求解可得,结合函数图象可得时,m的取值范围,即为时,m的取值范围【详解】解:(1),;(2)当时,;(3)由题意可得:,令当时,解得:,结合函数图象可得:当时,或,当时,m的取值范围为:或【点睛】题目主要考查二次函数化为顶点式,函数值比较大小解不等式等,理解题意,熟练运用顶点式是解题关键4、(1);(2)(2,1);(3)(2,1);(4)(0,),(0,),(0,-),(0,1)【分析】(1)应用待定系数法将ABC三点坐标代入解析式即可解答;(2)设P点横坐标为x,用x表示出PG、PF的长,再根据列方程求解即可;(3)当时,的面积等于的面积,先求出直线DF解析式,再求出直线DF与抛物线交点坐标F,进而根据点F坐标求出点P坐标;(4)分CP=CQ、CP=PQ、QC=QP讨论,分别求出Q点坐标【详解】解:(1)依题意得: ,解得:,抛物线的解析式为:;(2)点、点在直线BC上,直线BC解析式为:,设P点坐标为,则,当时,即:,解得:,(不合题意舍去),当时,P点坐标为(2,1),当时,点的坐标(2,1);(3),故抛物线的顶点为(1,4),当时,的面积等于的面积,设此时直线解析为,解得:,故直线解析为,依题意得:,解得:,点P的横坐标为x=2,此时点P坐标为(2,1)(4)点P坐标为(2,1);点C坐标(0,3),故CP=,设点Q坐标为(0,y)若,则;解得:,若,则,解得:(不合题意,舍去),;若,则,解得:;综上所述:点P为(0,),(0,),(0,-),(0,1)时,为等腰三角形【点睛】本题考查了二次函数待定系数法求解函数解析式的基本思路,同时考察了数形结台思想和建立数学模型以及发散思维构造图形并推理逻辑的能力5、(1);(2)(1,-5);(3)当抛物线开口向上,时,;当抛物线开口向上,或时,;当抛物线开口向下,时,;当抛物线开口向下,或时,;【分析】(1)根据抛物线对称轴公式进行求解即可;(2)把抛物线化成顶点式即可得到答案;(3)分当和当两种情况,然后讨论抛物线顶点与图像G的位置关系,由此求解即可【详解】解:(1)抛物线的对称轴是直线,;(2),抛物线解析式为,抛物线顶点坐标为(1,-5);(3)当,即时,图像G上纵坐标的最小值为-5,当时,当时,;当时,图像G上纵坐标的最小值为,最大值为,;当时,图像G上纵坐标的最大值为,最小值为,;当,即时,图像G上纵坐标的最大值为-5,当时,当时,;当时,图像G上纵坐标的最大值为,最小值为,;当时,图像G上纵坐标的最小值为,最大值为,;综上所述,当抛物线开口向上,时,;当抛物线开口向上,或时,;当抛物线开口向下,时,;当抛物线开口向下,或时,;【点睛】本题主要考查了二次函数图像的性质,求二次函数顶点坐标,求二次函数函数值的取值范围,解题的关键在于能够熟练掌握二次函数的相关知识