欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度京改版八年级数学下册第十五章四边形单元测试试题(含详解).docx

    • 资源ID:30629219       资源大小:1.03MB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度京改版八年级数学下册第十五章四边形单元测试试题(含详解).docx

    京改版八年级数学下册第十五章四边形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在方格纸中,选择标有序号中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD2、下列图案中,是中心对称图形的是( )ABCD3、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或4、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD5、如图,在中,ACB90°,AB10,CD是AB边上的中线,则CD的长是( )A20B10C5D26、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.37、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD8、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE9、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80º,那么CDE的度数为( )A20ºB25ºC30ºD35º10、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()AAB=BEBDEDCCADB=90°DCEDE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一张矩形纸片ABCD中,AB30cm,将纸片对折后展开得到折痕EF点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_cm2、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形3、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_4、如图,的度数为_5、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_三、解答题(5小题,每小题10分,共计50分)1、在RtABC中,ACB90°,ACBC,点D为AB边上一点,过点D作DEAB,交BC于点E,连接AE,取AE的中点P,连接DP,CP(1)观察猜想: 如图(1),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 (2)类比探究: 将图(1)中的BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由(3)问题解决: 若BC3BD3, 将图(1)中的BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长2、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接(1)当点在线段上时,如图,求证:;(2)当点在直线上移动时,位置如图、图所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明3、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段4、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积5、如图1,在平面直角坐标系中,直线y2x8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C(1)写出C点坐标 ;(2)若M为线段BC上一点,且满足SAMB SAOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标-参考答案-一、单选题1、B【分析】利用中心对称图形的定义判断即可【详解】解:根据中心对称图形的定义可知,满足条件故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键2、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合3、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:4÷2=2s,v的值为:4÷2=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,5÷2=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键4、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90°, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键5、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长【详解】解:在中,AB=10,CD是AB边上的中线故选:C【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半6、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90°,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90°,从而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90°,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90°,CDF+DCH90°,DHCDHE90°,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解7、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形8、D【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键9、C【分析】依题意得出AE=AB=AD,ADE=50°,又因为B=80°故可推出ADC=80°,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80°,AE=AB=AD,在三角形AED中,AE=AD,DAE=80°,ADE=50°,又B=80°,ADC=80°,CDE=ADC-ADE=30°故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数10、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答【详解】解:四边形ABCD为平行四边形,ADBC,且AD=BC,又AD=DE,DEBC,且DE=BC,四边形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项不符合题意;B、DEDC,EDB=90°+CDB90°,四边形DBCE不能为矩形,故本选项符合题意;C、ADB=90°,EDB=90°,DBCE为矩形,故本选项不符合题意;D、CEDE,CED=90°,DBCE为矩形,故本选项不符合题意故选:B【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键二、填空题1、或【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:为的三等分点在中有如图:当将纸片沿横向对折根据题意得:,在中有为的三等分点故答案为:或【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解2、【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.3、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数4、【分析】根据三角形外角的性质和四边形内角和等于360°可得A+B+C+D+E+F的度数【详解】解:如图,1=D+F,2=A+E,1+2+B+C=360°,A+B+C+D+E+F=360°故答案为:【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键5、144°度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案【详解】解:四边形的四个外角的度数之比为1:2:3:4,四个外角的度数分别为:360°×;360°×;360°×;360°×;它最大的内角度数为:故答案为:144°【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算三、解答题1、(1)PDPC,PDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PTAB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQBC于Q,利用等腰直角三角形的性质求得,即可求解【详解】解:(1)ACB90°,ACBC,点P为AE的中点,故答案为:,(2)结论成立理由如下:过点P作PTAB交BC的延长线于T,交AC于点O则,由勾股定理可得:点P为AE的中点,在中,(3)如图31中,当点E在BC的上方时,过点P作PQBC于Q则,由(2)可得,为等腰直角三角形由勾股定理得,如图32中,当点E在BC的下方时,同法可得PCPD2综上所述,PC的长为4或2【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形2、(1)见解析;(2)图中,图中【分析】(1)在上截取,连接,可先证得,则,进而可证得AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系【详解】解:(1)证明:如图,在上截取,连接四边形是正方形,ECF是等腰直角三角形,在中,;(2)图:,理由如下:如下图,在延长线上截取,连接四边形是正方形, ,ECF是等腰直角三角形, 在中,;图:如图,在DE上截取DF=BE,连接四边形是正方形,ECF是等腰直角三角形,在中, 【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键3、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解【分析】(1)根据四边形ABCD是平行四边形,得出ABCD即(ABED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EFBF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证DCF为等边三角形即可【详解】证明:(1)四边形ABCD是平行四边形,ABCD即(ABED),AB=CD,四边形ABDE为平行四边形,AB=DE,CD=ED,点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,EFBF,CD=ED,DF=CD=ED,ABCD,ABC=60°,DCF=ABC=60°,DCF为等边三角形,CF=CD=DF=AB=ED【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键4、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题意,根据平行线间的距离处处相等, .答:的面积为.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键5、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或【分析】(1)直接利用直线,令y=0,解方程即可;(2)结合图形,由SAMBSAOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;(3)分两种情形:当n4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N求出Q(n-4,n-2)当n4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题【详解】解:(1)直线交x轴正半轴于点C当y=0时,解得x=6点C(6,0)故答案为(6,0);(2)连接OM并双向延长,SAMBSAOB ,点O到AB与点M到AB的距离相等,直线OM平行于直线AB,AB解析式为y2x8,故设直线OM解析式为:,将直线OM的解析式与直线BC的解析式联立得方程组得:,解得:故点;(3)直线y2x8与x轴交于点A,与y轴交于点B,令y=0,2x8=0,解得x=-4,A(-4,0),令x=0,则y8B(0,8),点F为AB中点,点F横坐标为,纵坐标为F(-2,4),设G(0,n),当n4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N四边形FGQP是正方形,FG=QG,FGQ=90°,MGF+NGQ=180°-FGQ=180°-90°=90°,FMMN,QNMN,M=N=90°,MFG+MGF=90°,MFG=NGQ,在FMG和GNQ中,FMGGNQ,MG=NQ=2,FM=GN=n-4,Q(n-4,n-2),点Q在直线上,,当n4时,如图2-2中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N四边形FGQP是正方形,FG=QG,FGQ=90°,MGF+NGQ=180°-FGQ=180°-90°=90°,FMMN,QNMN,M=N=90°,MFG+MGF=90°,MFG=NGQ,在FMG和GNQ中,FMGGNQ,MG=NQ=2,FM=GN= 4-n,Q(4- n, n+2),点Q在直线上,n=-2,综上所述,满足条件的点G坐标为或【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题

    注意事项

    本文(2021-2022学年度京改版八年级数学下册第十五章四边形单元测试试题(含详解).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开