2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专题练习试题.docx
-
资源ID:30630632
资源大小:848.25KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专题练习试题.docx
七年级数学第二学期第十五章平面直角坐标系专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果点P(2,b)和点Q(a,3)关于x轴对称,则a+b=()A1B1C5D52、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2,3)3、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)4、已知点A(x+2,x3)在y轴上,则x的值为()A2B3C0D35、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D36、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A(-4,3)B(4,-3)C(-3,4)D(3,-4)7、点A(-3,1)到y轴的距离是()个单位长度A-3B1C-1D38、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )Ax轴正半轴上Bx轴负半轴上Cy轴正半轴上Dy轴负半轴上9、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限A四B三C二D一10、若点在第一象限,则a的取值范围是( )ABCD无解第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P(2,3)与点Q(a,b)关于原点对称,则a+b_2、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为_3、若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐为_4、已知点P(3,1)关于y轴的对称点Q的坐标为 _5、若点(1,m)与点(n,2)关于y轴对称,则的值为_三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),ABC关于y轴的对称图形为A1B1C1 (1)请画出ABC关于y轴对称图形A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )(2)在y轴上取点D,使得ABD为等腰三角形,这样的点D共有 个2、ABC在平面直角坐标系中的位置如图所示,已知A(2,3),B(3,1),C(1,2)(1)画出ABC绕点O逆时针旋转90°后得到的A1B1C1;(2)画出ABC关于原点O的对称图形A2B2C2;(3)直接写出下列点的坐标:A1 ,B2 3、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?4、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(4,3)、B(3,1)、C(1,3)(1)请按下列要求画图:将ABC先向右平移4个单位长度、再向上平移2个单位长度,得到A1B1C1,画出A1B1C1;A2B2C2与ABC关于原点O成中心对称,画出A2B2C2(2)在(1)中所得的A1B1C1和A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 5、如图,在平面直角坐标系xOy中,A(1,2)(1)作ABC关于y轴的对称图形ABC;(2)写出B和C的坐标;(3)求ABC的面积6、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(3,2)(1)作ABC关于x轴对称图形A'B'C';(2)求CAA'的面积7、如图,等腰直角ABC中,BCAC,ACB90°,现将该三角形放置在平面直角坐标系中:(1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;(2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示)8、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)(1)画出ABC关于轴对称的A1B1C1的图形及各顶点的坐标;(2)画出ABC关于轴对称的A2B2C2的图形及各顶点的坐标; (3)求出ABC的面积9、在平面直角坐标系xOy中,直线l:xm表示经过点(m,0),且平行于y轴的直线给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点例如,如图,点M(3,2)的一次反射点为(3,2),点M关于直线l:x1的二次反射点为(1,2)已知点A(1,1),B(3,1),C(3,3),D(1,1)(1)点A的一次反射点为 ,点A关于直线:x2的二次反射点为 ;(2)点B是点A关于直线:xa的二次反射点,则a的值为 ;(3)设点A,B,C关于直线:xt的二次反射点分别为,若与BCD无公共点,求t的取值范围10、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、,且四边形的面积为25,求的长-参考答案-一、单选题1、B【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值【详解】解:点P(2,b)和点Q(a,3),又关于x轴对称的点,横坐标相同,纵坐标互为相反数,a2,b3a+b1,故选:B【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键2、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键3、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小4、A【分析】根据y轴上点的横坐标为0列方程求解即可【详解】解:点A(x+2,x3)在y轴上,x+2=0,解得x=-2故选:A【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键5、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键6、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答【详解】解:点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,点P的横坐标是-3,纵坐标是4,点P的坐标为(-3,4)故选C【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键7、D【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果【详解】解:由题意知到轴的距离为到轴的距离是个单位长度故选D【点睛】本题考察了点到坐标轴的距离解题的关键在于明确距离的求解方法距离为正值是易错点解题技巧:点到轴的距离=;到轴的距离=8、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解【详解】解:点P(m,n)是第三象限内的点,n0,-n0,点Q(-n,0)在x轴正半轴上;故选A【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键9、C【分析】直接利用y轴上点的坐标特点得出n的值,进而得出答案【详解】解:点A(n,3)在y轴上,n=0,则点B(n-1,n+1)为:(-1,1),在第二象限故选:C【点睛】本题主要考查了点的坐标,正确得出n的值是解题关键10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由得: 由得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、1【分析】根据两点关于原点对称,横纵坐标分别互为相反数计算即可【详解】解:点与点关于原点对称,a=-2,b= 3,a+b=-2+3=1,故答案为:1【点睛】本题考查了坐标系中两点关于原点对称的计算,代数式的值,熟练掌握两点关于原点对称时坐标之间的关系是解题的关键2、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7)故答案为:(-2,-7)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数3、【分析】先根据点在第二象限可得点的横坐标为负数、纵坐标为正数,再根据点到坐标轴的距离即可得【详解】解:点在第二象限,点的横坐标为负数、纵坐标为正数,点到轴的距离为3,到轴的距离为4,点的横坐标为、纵坐标为3,即点的坐标为,故答案为:【点睛】本题考查了点坐标、点到坐标轴的距离,熟练掌握四个象限内的点坐标的符号规律是解题关键4、(3,1)【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(3,1)故答案为:(3,1)【点睛】本题考察坐标系中点的对称解题的关键在于明确点在对称时坐标的变化形式5、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点(1,m)与点(n,2)关于y轴对称,;故答案为:3【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数三、解答题1、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得【详解】解:(1)如图所示,A1B1C1即为所求A1(-1,4) ;B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;以点B为顶点,BA为腰的等腰ABD,且点D在y轴上的有2个;以AB为底边的等腰三角形,且点D在y轴上的点只有1个;所以这样的点D共有5个,故答案为:5【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点2、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;(3)根据(1)(2)说画图形求解即可【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),故答案为:(-3,-2);(3,-1)【点睛】本题主要考查了坐标与图形变化旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解3、东经度,南纬度可以表示为【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示【详解】解:由题意可知东经度,南纬度,可用有序数对表示故东经度,南纬度表示为【点睛】本题考察了用有序数对表示位置解题的关键在于读懂题意中给定的规则4、(1)见解析;见解析;(2)M(2,1)【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;(3)对应点连线的交点M即为所求【详解】解:(1)如图,A1B1C1即为所求;如图,A2B2C2即为所求;(2)如图,点M即为所求,M(2,1),故答案为:(2,1)【点睛】本题考查作图旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型5、(1)见解析;(2)B(5,6),C(-7,2);(3)16【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A,B,C即可;(2)根据点的位置写出坐标即可;(3)把三角形面积看成长方形面积减去周围三个三角形面积即可【详解】解:(1)如图,ABC即为所求;(2)B(5,6),C(-7,2);(3)SABC8×6×8×4×2×4×6×416【点睛】本题考查作图轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积6、(1)见解析;(2)16【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)直接根据三角形的面积公式求解即可【详解】解:(1)如图所示,A'B'C'即为所求(2)CAA'的面积为×8×416【点睛】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义和性质7、(1)点A的坐标;(2)P的坐标为:或或【分析】(1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;(2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得【详解】解:(1)过点A作轴,在中:,轴,在与中,又点B坐标为,点C坐标为,点A的坐标;(2)作关于x轴的对称图形得到,点B坐标为,点C坐标为,点A的坐标;点O,C关于直线对称,作关于直线的对称图形得到,过点作轴,在与中,结合点所在的位置可得:;作关于x轴的对称图形得到,即,与横坐标相同,纵坐标互为相反数,可得:;综上所述:P的坐标为:或或【点睛】本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键8、(1)图见解析, A1(2,-5)B1(1,-1),C1(3,-2) ; (2)图见解析,A2(-2,5),B2(-1,1),C2(-3,2);(3)3.5【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得,然后写出坐标;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得,然后写出坐标;(3)利用割补法求解可得【详解】解:(1)如图所示,A1B1C1即为所求,A1(2,-5),B1(1,-1),C1(3,-2) ;(2)如图所示,A2B2C2即为所求,A2(-2,5),B2(-1,1),C2(-3,2);(3)ABC的面积=3.5【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质9、(1)(1,1);(5,1);(2)-2;(3)2或1【分析】(1)根据一次反射点和二次反射点的定义求解即可;(2)根据二次反射点的意义求解即可;(3)根据题意得,分0和0时与BCD无公共点,求出t的取值范围即可【详解】解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),点A关于直线:x2的二次反射点为(5,1)故答案为: (1,1);(5,1) (2)A(1,1),B(3,1),且点B是点A关于直线:xa的二次反射点, 解得, 故答案为: 2 (3)由题意得,(1,1),(3,1),(3,3),点D(1,1)在线段上当0时,只需关于直线的对称点在点B左侧即可,如图1当与点B重合时,2,当2时,与BCD无公共点当0时,只需点D关于直线x的二次反射点在点D右侧即可,如图2,当与点D重合时,1,当1时,与BCD无公共点综上,若与BCD无公共点,的取值范围是2,或1【点睛】本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解10、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)当点在轴正半轴时,如图, ,当点在原点时,都在轴上,不能构成三角形,则时,不存在当点在轴负半轴时,如图, , ,综上所述:(3)如图,过点作,连接,设,则, 是等腰直角三角形在和中,是等腰直角三角形中,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键