2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组章节训练试题(含答案及详细解析).docx
-
资源ID:30636973
资源大小:280.57KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组章节训练试题(含答案及详细解析).docx
初中数学七年级下册第九章不等式与不等式组章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、对有理数a,b定义运算:ab=ma +nb,其中m,n是常数,如果34=2,58>2,那么n的取值范围是( )An>Bn<Cn>2Dn<22、下列式子:57;2x3;y0;x5;2a+l;x1其中是不等式的有( )A3个B4个C5个D6个3、若不等式(a+1)x>2的解集为x<,则a的取值范围是( )Aa<1Ba<-1Ca>1Da>-14、若实数a,b满足ab,则下列不等式一定成立的是( )Aab+2Ba1b2CabDa2b25、已知x2不是关于x的不等式2xm4的整数解,x3是关于x的不等式2xm4的一个整数解,则m的取值范围为()A0m2B0m2C0m2D0m26、若关于x的分式方程+1有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是()A0B24C72D127、若mn,则下列选项中不成立的是()Am+4n+4Bm4n4CD4m4n8、不等式组的解集是( )ABCD无解9、如果xy,则下列不等式正确的是()Ax1y1B5x5yCD2x2y10、下列不等式组,无解的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、已知点关于轴的对称点在第一象限,则的取值范围是_2、如果a2,那么不等式组的解集为_,的解集为_3、用“”或“”填空,并说明是根据不等式的哪条基本性质:(1)如果x+25,那么x_3;根据是_(2)如果,那么a_;根据是_(3)如果,那么x_;根据是_(4)如果x-3-1,那么x_2;根据是_4、已知关于x的不等式组无解,则a的取值范围是_5、根据“3x与5的和是负数”可列出不等式 _三、解答题(5小题,每小题10分,共计50分)1、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板_张,正方形纸板_张(请用含有x的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完已知290a300,求a的值2、倡导垃圾分类,共享绿色生活为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买型号和型号垃圾分拣机器人共台,其中型号机器人不少于型号机器人的倍设该垃圾处理厂购买台型号机器人(1)该垃圾处理厂最多购买几台型号机器人?(2)机器人公司报价型号机器人万元台,型号机器人万元台,要使总费用不超过万元,则共有哪几种购买方案?3、解下列不等式:(1);(2)4、疫情期间,某物业公司欲购进A、B两种型号的防护服,若购入A种防护服30套,B种防护服50套,需6600元,若购入A种防护服40套,B种防护服10套,需3700元(1)求购进A、B两种防护服的单价分别是多少元?(2)若该公司准备用不多于12300元的金额购进这两种防护服共150套,求A种防护服至少要购进多少套?5、用等号或不等号填空:(1)比较2x与x2+1的大小:当x=2时,2x x2+1当x=1时,2x x2+1当x=1时,2x x2+1(2)任选取几个x的值,计算并比较2x与x2+1的大小;-参考答案-一、单选题1、A【分析】先根据新运算的定义和34=2将用表示出来,再代入58>2可得一个关于的一元一次不等式,解不等式即可得【详解】解:由题意得:,解得,由58>2得:,将代入得:,解得,故选:A【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键2、C【分析】主要依据不等式的定义:用“”、“”、“”、“”、“”等不等号表示不相等关系的式子是不等式来判断【详解】解:均为不等式共5个故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式解答此类题关键是要识别常见不等号:、3、B【分析】根据不等式的性质可得,由此求出的取值范围【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,故选:B【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变4、B【分析】根据不等式的性质即可依次判断【详解】解:当ab时,ab+2不一定成立,故错误;当ab时,a1b1b2,成立,当ab时,ab,故错误;当ab时,a2b2不一定成立,故错误;故选:B【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握5、B【分析】由2x-m4得x,根据x=2不是不等式2x-m4的整数解且x=3是关于x的不等式2x-m4的一个整数解得出2、3,解之即可得出答案【详解】解:由2x-m4得x,x=2不是不等式2x-m4的整数解,2,解得m0;x=3是关于x的不等式2x-m4的一个整数解,3,解得m2,m的取值范围为0m2,故选:B【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式6、D【分析】根据分式方程的解为正数即可得出a1或3或4或2或6,根据不等式组有解,即可得出1+y,找出31+2中所有的整数,将其相乘即可得出结论【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值解:+1,x+x22ax2x+ax2+2(2+a)x4x 关于x的分式方程+1有整数解,2+a±1或±2或±4且2a1或3或4或2或62(y1)+a15y,2y2+a15y2y5y1a+23y3ay1+2y+10,2y1y1+y关于y的不等式组恰有2个整数解,31+26a3又a1或3或4或2或6,a3或4所有满足条件的整数a的值之积是3×(4)12故选:D【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出31+2是解题的关键7、D【分析】根据不等式的基本性质进行解答即可【详解】解:mn,A、m+4n+4,成立,不符合题意;B、m4n4,成立,不符合题意;C、,成立,不符合题意;D、4m4n,原式不成立,符合题意;故选:D【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键8、C【分析】分别解出两个不等式,即可求出不等式组的解集【详解】解:解不等式得 x1,解不等式得 x3,不等式组的解集为1x3故选:C【点睛】本题考查了解一元一次不等式组,正确解出两个不等式,并正确确定两个不等式的公共解是解题关键,求不等式组的解集可以借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”确定,也可以根据数轴确定9、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键10、D【分析】根据不等式组的解集的求解方法进行求解即可【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键二、填空题1、【分析】根据题意可知点在第四象限,然后根据第四象限点的坐标特征求解即可【详解】解:点关于轴的对称点在第一象限,点在第四象限,解得:,故答案为:【点睛】本题考查了点的坐标特征以及解一元一次不等式组,根据题意得出点在第四象限是解本题的关键2、x2 无解 【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】a2,不等式组的解集为x2;不等式组中x不存在,方程组无解;故答案是:x2;无解【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键3、 不等式基本性质1 不等式基本性质3 不等式基本性质2 不等式基本性质1; 【分析】(1)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可;(2)根据不等式基本性质3,不等式两边同时乘以或除以一个负数,不等号方向改变,据此求解即可;(3)根据不等式基本性质2,不等式两边同时乘以或除以一个正数,不等号方向不变,求解即可;(4)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可【详解】解:(1)如果x+25,那么,不等号两边同时减去2,不等号方向不变,根据的是不等式基本性质1;(2)如果,不等号两边同时乘以,那么;根据是不等式基本性质3;(3)如果,不等号两边同时乘以,那么;根据是不等式基本性质2;(4)如果x-3-1,不等号两边同时加上3,那么;根据是不等式基本性质1;故答案为:,不等式基本性质1;,不等式基本性质3;,不等式基本性质2;,不等式基本性质1【点睛】此题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质4、【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可【详解】解:由得:由得:不等式组无解故答案为【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找5、【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案【详解】3x与5的和是负数表示为故答案为:【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键三、解答题1、(1)长方形纸板用了(x+300)张,正方形纸板用了(200x)张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298【解析】【分析】(1)可根据竖式纸盒+横式纸盒=100个,每个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空;(2)根据题意,列不等式组求解即可;(3)设可以生产竖式纸盒m个,横式纸盒个,可列出方程,再根据a的取值范围求出a的取值范围即可【详解】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100x)个,则长方形纸板用了张,正方形纸板用了张长方形纸板用了(x+300)张,正方形纸板用了(200x)张(2)依题意,得:, 解得:x为整数,x38,39,40,共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个(3)设可以生产竖式纸盒m个,横式纸盒个,由此可得,为偶数,依题意,得:或或答:a的值为293或298【点睛】本题考查一元一次不等式组的应用,列代数式,解题的关键是读懂题意,找到等量关系,正确列不等式求解,注意实际问题最后取整数解2、(1)25台;(2)方案1:A23台,B37台;方案2:A24台;B36台;方案3:A25台,B35台【解析】【分析】(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,根据购进B型号机器人的数量不少于A型号机器人的1.4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总价=单价×数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x25,即可得出各购买方案【详解】解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,依题意得:60-x1.4x解得:x25答:该垃圾处理厂最多购买25台A型号机器人(2)依题意得:6x+10(60-x)510,解得:x又x为整数,且x25x可以取23,24,25,共有3种购买方案,方案1:购买23台A型号机器人,37台B型号机器人;方案2:购买24台A型号机器人,36台B型号机器人;方案3:购买25台A型号机器人,35台B型号机器人【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键3、(1);(2)【解析】【分析】(1)由题意去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集;(2)由题意去分母,去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集【详解】解:(1),去括号得:,移项,合并同类项得:,不等式的两边同除以得:不等式的解集是:(2),去分母得:,去括号得:,移项,合并同类项得:,不等式的两边同除以得:不等式的解集是:【点睛】本题主要考查一元一次不等式的解法,熟练掌握并利用解一元一次不等式的一般步骤解答是解题的关键4、(1)购进A、B两种防护服的单价分别是70元、90元;(2)A种防护服至少要购进60套【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,然后求解即可;(2)根据题意可以列出相应的不等式,然后求解即可【详解】解:(1)设购进A、B两种防护服的单价分别是a元、b元,由题意可得: ,解得:,答:购进A、B两种防护服的单价分别是70元、90元;(2)设购进A种防护服x套,则购进B种防护服(150x)套,由题意可得70x+90(150x)12300,即: 解得:x60,答:A种防护服至少要购进60套【点睛】本题考查二元一次方程组的实际应用,以及一元一次不等式的应用,能够列出相关的方程组或不等关系是解题的重点5、(1),=,;(2)当x=3时,2xx2+1,当x=2时,2xx2+1【解析】【分析】(1)将x的值代入不等号两边的代数式中,比较大小即可得;(2)任选两个值,按照(1)中方法代入求值,然后比较大小即可得【详解】解:(1)比较2x与的大小:当时,;当时,;当时,;故答案为:,;(2)当时,;当时,【点睛】题目主要考查不等式的性质,熟练掌握不等式的性质是解题关键