欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年最新北师大版九年级数学下册第三章-圆单元测试练习题(无超纲).docx

    • 资源ID:30639017       资源大小:657.22KB        全文页数:29页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年最新北师大版九年级数学下册第三章-圆单元测试练习题(无超纲).docx

    北师大版九年级数学下册第三章 圆单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC内接于O,BAC30°,BC6,则O的直径等于()A10B6C6D122、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2003、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为()A12+2B4+C24+2D12+144、如图,中,则等于( )ABCD5、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦6、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D77、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20°B25°C30°D40°8、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm9、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5°B45°C90°D67.5°10、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是半圆O的直径,AB4,点C,D在半圆上,OCAB,点P是OC上的一个动点,则BPDP的最小值为_2、如图,已知PA、PB是O的两条切线,点A、点B为切点,线段OP交O于点M下列结论:PAPB;OPAB;四边形OAPB有外接圆;点M是AOP外接圆的圆心其中正确的结论是_(填序号)3、已知O、I分别是ABC的外心和内心,BIC125°,则BOC的大小是 _度4、一个正多边形的中心角是,则这个正多边形的边数为_5、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是_三、解答题(5小题,每小题10分,共计50分)1、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形2、抛物线的顶点的纵坐标为 (1)求,应满足的数量关系;(2)若抛物线上任意不同两点,都满足:当的时,;当时,直线与抛物线交于、两点,且为等腰直角三角形求抛物线的解析式若直线恒过定点,且以为直径的圆与直线总有公共点,求的取值范围3、如图,是的直径,为上一点,(1)求证: 是 的切线(2)若,垂足为,交于点,求证:是等腰三角形4、如图,AB为O的切线,B为切点,过点B作BCOA,垂足为点E,交O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC(1)求证:AC为O的切线;(2)若O半径为2,OD4求线段AD的长5、已知:如图,射线求作:,使得点在射线上,作法:在射线上任取一点;以点为圆心,的长为半径画圆,交射线于另一点;以点为圆心,的长为半径画弧,在射线上方交于点;连接、(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:为的直径,点在上,(_)(填推理依据)连接,为等边三角形(_)(填推理依据)所以为所求作的三角形-参考答案-一、单选题1、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30°,BOC=60°OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键2、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路3、A【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果【详解】解:正三角形的面积为:,三个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键4、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆心角,ABC=AOC=.故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半5、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.6、A【分析】根据点与圆的位置关系可得,由此即可得出答案【详解】解:的半径为5,点在内,观察四个选项可知,只有选项A符合,故选:A【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键7、B【分析】连接OA,如图,根据切线的性质得PAO=90°,再利用互余计算出AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90°,P=40°,AOP=50°,OA=OB,B=OAB,AOP=B+OAB,B=AOP=×50°=25°故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系8、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键9、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键10、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键二、填空题1、【分析】如图,连接AD,PA,PD,OD首先证明PA=PB,再根据PD+PB=PD+PAAD,求出AD即可解决问题【详解】解:如图,连接AD,PA,PD,ODOCAB,OA=OB,PA=PB,COB=90°,DOB=×90°=60°,OD=OB,OBD是等边三角形,ABD=60°AB是直径,ADB=90°,AD=ABsinABD=2,PB+PD=PA+PDAD,PD+PB2,PD+PB的最小值为2,故答案为:2【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题2、【分析】根据切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断,利用反证法判断【详解】解:如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是故填【点睛】本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键3、140【分析】作的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得【详解】解:如图所示,作的外接圆,点I是的内心,BI,CI分别平分和,点O是的外心,故答案为:140【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键4、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可【详解】解:设这个正多边形的边数为n,这个正多边形的中心角是40°,这个正多边形是九边形,故答案为:九【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键5、相切【分析】本题应将原点到直线x=3的距离与半径对比即可判断【详解】解:原点到直线x=3的距离为3,半径为3,则有3=3,这个圆与直线x=3相切故答案为:相切【点睛】本题考查了直线与圆的位置关系、坐标与图形性质直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径三、解答题1、(1)见解析;(2)BC,90°,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90°即可【详解】(1)作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC=BCAB是直径,ACB=90°(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90°,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键2、(1);(2);【分析】(1)当x=1时,y=a+b+c,确定P的坐标为(1,a+b+c),确定函数的对称轴为x=1即,关系确定;(2)由时,得,结合,得,得到时,y随x的增大而减小;由时,得,结合,得,得到时,y随x的增大而增大,判定直线是抛物线的对称轴,且a0;得到,从而确定P(1,0),线与抛物线交于、两点,其中一点必是抛物线与y轴的交点,设为M(0,c),根据为等腰直角三角形,可证OPM是等腰直角三角形,从而得到PO=OM=1即M(0,1),故c=a=1,b=-2a=-2即确定函数解析式;由直线恒过定点,得到直线AB为y=1;结合抛物线与y轴的交点为(0,1),不妨设点A是抛物线与y轴的交点,根据对称轴为x=1,确定B的坐标为(2,1),故AB=2,所以为直径的圆的半径为1,圆心是AB的中点,从而确定出圆,利用数形结合思想,可以确定圆与直线总有公共点时的取值范围【详解】(1)(1)当x=1时,y=a+b+c,P的坐标为(1,a+b+c),函数的对称轴为x=1,b=-2a;(2)时,时,y随x的增大而减小;时,时,y随x的增大而增大,直线是抛物线的对称轴,且a0;函数的对称轴为x=1,a+b+c=2a-2a=0,P(1,0),PO=1,(0,c)是抛物线与y轴的交点,直线y=c与抛物线交于、两点中一点必是抛物线与y轴的交点,设为M(0,c),则OM=c,为等腰直角三角形,NMP=45°,OMP=45°,OPM是等腰直角三角形,PO=OM=1,c=a=1,b=-2a=-2,函数解析式为;直线恒过定点,直线AB为y=1;抛物线与y轴的交点为(0,1),不妨设点A是抛物线与y轴的交点,对称轴为x=1,B的坐标为(2,1),AB=2,为直径的圆的半径为1,圆心是AB的中点(1,1),作图如下,y=0时,直线与圆相切;y=2时,直线与圆相切;圆与直线总有公共点时的取值范围为0m2【点睛】本题考查了抛物线的解析式,对称性,直线与圆的位置关系,等腰直角三角形的性质,熟练掌握抛物线的对称性,灵活判定直线与圆的位置关系是解题的关键3、(1)证明见解析;(2)证明见解析【分析】(1)连接,为半径,直径所对的圆周角为,;由题意可知,进而可得出是的切线(2)由题意知,对顶角,故有,;进而得出是等腰三角形【详解】解:(1)证明:如图,连接是的直径 又过圆心是的切线(2)是等腰三角形【点睛】本题考察了圆周角、切线、等腰三角形等知识点解题的关键与难点在于找角与角之间相等或互余的关系4、(1)见解析;(2)4【分析】(1)连接OB,证明AOBAOC(SSS),可得ACOABO90°,即可证明AC为O的切线;(2)在RtBOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OB,AB是O的切线,OBAB,即ABO90°,BC是弦,OABC,CEBE,ACAB,在AOB和AOC中,AOBAOC(SSS),ACOABO90°,即ACOC,AC是O的切线;(2)在RtBOD中,由勾股定理得,BD2,sinD,O半径为2,OD4,解得AC2,ADBD+AB4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键5、(1)图形见解析(2)直径所对的圆周角是直角;三边相等的三角形是等边三角形【分析】(1)根据要求作出图形即可;(2)根据圆周角定理等边三角形的判定和性质解决问题即可(1)如图,ABC即为所求作(2)AB为O的直径,点C在O上,ACB=90°(直径所对的圆周角是直角),连接OCOA=OC=AC,AOC为等边三角形(三边相等的三角形是等边三角形),A=60°故答案为:直径所对的圆周角是直角,三边相等的三角形是等边三角形【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题

    注意事项

    本文(2022年最新北师大版九年级数学下册第三章-圆单元测试练习题(无超纲).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开