2022年浙教版初中数学七年级下册第四章因式分解同步测试练习题.docx
-
资源ID:30640287
资源大小:274.86KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年浙教版初中数学七年级下册第四章因式分解同步测试练习题.docx
章节同步练习2022年·浙教版初中数学 七年级下册知识点习题·定向攻克·含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解同步测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)22、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)23、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.4、对于任何整数a,多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除5、下列分解因式中,x2+2xy+x=x(x+2y);x2+4x+4=(x+2)2;x2+y2=(x+y)(xy).正确的个数为()A.3B.2C.1D.06、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)27、下列各式变形中,是因式分解的是( )A.B.C.D.8、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定9、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.10、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)11、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y312、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)13、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)14、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x315、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、若xz2,zy1,则x22xyy2_2、因式分解:x26x_;(3mn)23m+n_3、分解因式:_;4、分解因式:2x3+12x2y+18xy2_5、分解因式:_6、若,则a2bab2_7、多项式x3yxy的公因式是_8、已知二次三项式x2+px+q因式分解的结果是(x3)(x5),则p+q=_9、多项式的公因式是_10、分解因式:3mn212m2n_三、解答题(3小题,每小题5分,共计15分)1、探究:如何把多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答:_; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和猜想并填空:x2+8x+15=x2+(_)+(_)x+(_)×(_)=(x+_)(x+_)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证请写出验证过程(4)请运用上述方法将下列多项式进行因式分解:x2-x-122、因式分解:(1)x316x;(2)2x3y+4x2y22xy33、把下列各式分解因式:(1) (2)-参考答案-一、单选题1、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C、3x6y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).3、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.4、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式则对于任何整数a,多项式都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.5、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.6、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.7、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.8、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2×(-2+3)|=2,N|-1×(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.9、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).10、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.11、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为,所以的公因式为,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.12、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.13、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.14、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.15、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.二、填空题1、9【分析】先根据xz2,zy1可得xy3,再根据完全平方公式因式分解即可求解.【详解】解:xz2,zy1,xzzy21,即:xy3,x22xyy2(xy)29,故答案为:9.【点睛】本题考查了完全平方公式进行因式分解以及整式加减,熟练掌握完全平方公式是解决本题的关键.2、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.3、【分析】直接提取公因式即可得解.【详解】解:=.故答案为:.【点睛】此题主要考查了因式分解,熟练运用提公因式,找出公因式是解答此题的关键.4、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和公式法是解题的关键.5、【分析】根据分解因式的步骤,先提取公因式再利用完全平方公式分解即可.【详解】解:,故答案为: .【点睛】本题主要考查了因式分解,熟悉掌握因式分解的方法是解题的关键.6、1【分析】直接提取公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)×21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7、xy【分析】根据公因式的找法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.【详解】解:多项式x3yxy的公因式是xy.故答案为:xy.【点睛】此题考查了找公因式,关键是掌握找公因式的方法.8、7【分析】利用多项式乘以多项式法则,以及多项式相等的条件求出、的值,再代入计算可得.【详解】解:根据题意得:,则.故答案是:7.【点睛】此题考查了因式分解十字相乘法,熟练掌握运算法则是解本题的关键.9、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.10、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(n4m).故答案为:3mn(n4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.三、解答题1、(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(3×5)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+3+(-4)x+3×(-4)即可得出答案.【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)x2+8x+15=x2+(3+5)x+(3×5)x2+8x+15=x2+(3+5)x+(3×5)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+3+(-4)x+3×(-4)=(x+3)(x-4).【点睛】本题考查了十字相乘法分解因式,掌握x2+(a+b)x+ab=(x+a)(x+b)的结构特征是正确应用的前提.2、(1)x(x+4)(x4);(2)2xy(xy)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式x(x216)x(x+4)(x4);(2)原式2xy(x22xy+y2)2xy(xy)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.3、(1);(2)【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式提取2y,再利用完全平方公式分解即可.【详解】解:(1)4(a24);(2)2y(x22xyy2)2y(xy)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.