欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度北师大版八年级数学下册第六章平行四边形必考点解析试卷(无超纲).docx

    • 资源ID:30667907       资源大小:731.10KB        全文页数:31页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度北师大版八年级数学下册第六章平行四边形必考点解析试卷(无超纲).docx

    北师大版八年级数学下册第六章平行四边形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D82、如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°照这样走下去,他第一次回到出发点A点时,一共走的路程是()A180米B110米C120米D100米3、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220°B180°C270°D240°4、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或175、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D56、如图,AD是ABC的角平分线,DEAB,DFAC,垂足分别为E,F,连接EF,EF与AD相交于点G,则下列关系正确的是( )AB且CD7、一个正多边形的每个外角都等于45°,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,58、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130°,则PEF的度数为()A25°B30°C35°D50°9、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:210、从一个多边形的顶点出发,可以作2条对角线,则这个多边形的内角和是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个四边形的四个内角的度数比为1:3:4:1,则最大内角的度数为 _2、如图,在ABCD中,BC3,CD4,点E是CD边上的中点,将BCE沿BE翻折得BGE,连接AE,A、G、E在同一直线上,则AG_,点G到AB的距离为_3、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 _4、如图,四边形ABCD中,C58°,BD90°,E、F分别是BC、DC上的点,当AEF的周长最小时,EAF的度数为_5、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_三、解答题(5小题,每小题10分,共计50分)1、(问题情景)课外兴趣小组活动时,老师提出了如下问题:如图1,在ABC中,若AB10,AC6,求BC边上的中线AD的取值范围小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE请根据小明的方法思考:(1)由已知和作图能得到ADCEDB,其依据是 ,请选择正确的一项ASSS;BSAS;CAAS;DHL(2)由“三角形的三边关系”可求得AD的取值范围是 (初步运用)(3)如图2,在四边形ABCD中,ABCD,点E是BC的中点,若AE是BAD的平分线,试猜想线段AB,AD,DC之间的数量关系,并证明你的猜想(灵活运用)(4)如图3,AD是ABC的中线,BE交AC于E,交AD于F,且AEEF,若EF5,EC3,求线段BF的长;(拓展延伸)(5)如图4,CB是AEC的中线,CD是ABC的中线,且ABAC,下列四个选项中:AACDBCD BCE2CD CBCDBCE DCDCB所有正确选项的序号是 2、已知,在中,点D为BC的中点(1)观察猜想如图,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是_;线段DE与DF的位置关系是_(2)类比探究如图,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图,若点E、F分别为AB、CA延长线的点,且,请直接写出的面积3、如图1,在等腰三角形ABC中,A120°,ABAC,点D、E分别在边AB、AC上,ADAE,连接BE点M、N、P分别为DE、BE、BC的中点(1)图1中,观察猜想线段M、NP的数量关系是 ,MNP的大小为 ;(2)把ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断MMP的形状,并说明理由;(3)把ADE绕点A在平面内自由旋转,若AD1,AB3,请求出MNP面积的最大值4、已知一个多边形的边数为(1)若,求这个多边形的内角和(2)若这个多边形的内角和的比一个四边形的外角和多,求的值5、如图,ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF(1)求证:BDF30°(2)若EFD45°,AC+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角DMN,其中DNMN,连接FM,点O为FM的中点,当DMN绕点D旋转时,求证:EO的最大值等于BC-参考答案-一、单选题1、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90°,根据勾股定理计算,得到答案【详解】解:C=90°,CAB+CBA=90°,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90°,即PDQ=90°,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键2、D【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可【详解】解:每次小明都是沿直线前进10米后向左转36°,他走过的图形是正多边形,边数n=360°÷36°=10,他第一次回到出发点A时,一共走了10×10=100米故选:D【点睛】本题考查了多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键3、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键5、B【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质6、B【分析】证明ADEADF(HL),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可【详解】解:AD平分BAC,BAD=CAD,DEAB,DFAC,DE= DF,在ADE和ADF中,ADEADF(HL),AE= AF,AD是线段EF的垂直平分线,ADEF且EG=FG,故选项B正确;DEAB,DFAC,AED=AFD=90°,BAC+EDF=360°-AED-AFD =180°,BAC不一定等于90°,EDF也不一定等于90°,故选项C错误;EDF90°,而AFD=90°,EDF+AFD180°,DE与AC不一定平行,故选项D错误;AED=90°,DE与AE不一定相等,AG与DG也不一定相等,故选项A错误;故选:B【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键7、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45°,求出这个多边形的边数,再根据一个多边形有 条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45°,360÷45=8,这个正多边形是正8边形, =20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360°,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为  条8、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有PEF=PFE,再根据三角形的内角和定理,即可求解【详解】解:点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130°, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键9、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法10、D【分析】根据从多边形的一个顶点可以作对角线的条数公式(n3)求出边数,然后根据多边形的内角和公式(n2)180°列式进行计算即可得解【详解】解:多边形从一个顶点出发可引出2条对角线,n3=2,解得:n=5,内角和=(52)180°=540°故选:D【点睛】本题考查了多边形的内角和公式能够利用多边形的对角线的公式,求出多边形的边数是解题的关键二、填空题1、【分析】根据四边形内角和为360°和四个内角的度数比为1:3:4:1求解即可【详解】解:四边形内角和为360°,且四边形的四个内角的度数比为1:3:4:1,最大内角的度数= ,故答案为:【点睛】此题考查了四边形内角和的度数,解题的关键是熟练掌握四边形内角和的度数四边形内角和为360°2、2【分析】根据折叠性质和平行四边形的性质可以证明ABGEAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值【详解】解:如图,GFAB于点F,点E是CD边上的中点,CE=DE=2,由折叠可知:BGE=C,BC=BG=3,CE=GE=2,在ABCD中,BC=AD=3,BCAD,D+C=180°,BG=AD,BGE+AGB=180°,AGB=D,ABCD,BAG=AED,在ABG和EAD中,ABGEAD(AAS),AG=DE=2,AB=AE=AG+GE=4,GFAB于点F,AFG=BFG=90°,在RtAFG和BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,GF2=AG2-AF2=4-=,GF=,故答案为2,【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明ABGEAD是解题的关键3、6【分析】根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数【详解】解:根据题意,得(n2)180360×2,解得:n6故这个多边形的边数为6故答案为:6【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决4、64°【分析】根据要使AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A,A,即可得出AAE+AHAA58°,进而得出AEF+AFE2(AAE+A),即可得出答案【详解】解:作A关于BC和CD的对称点A,A,连接AA,交BC于E,交CD于F,则AA即为AEF的周长最小值作DA延长线AH,C58°,ABCADC90°,DAB360°-ABCADC -C=122°,HAA58°,AAE+AHAA58°,EAAEAA,FADA,EAA+AAF58°,AEF=FAD+A,AFE=EAA+EAA,AEF+AFE +AFE2(AAE+A)=116°EAF180°-AEF-AFE=64°,故答案为:64°【点睛】本题考查平面内最短路线问题求法、三角形的外角的性质和垂直平分线的性质,根据已知得出E,F的位置是解题关键5、10或14或10【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况三、解答题1、(1)B,(2)2AD8,(3)ADAB+DC;证明见解析,(4)8(5)B、C【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;(3)延长AE交DC延长线于点M,类似(1)证明三角形全等,根据全等三角形的性质解答;(4)延长AD到M,使ADDM,连接BM,证明ADCMDB,根据全等三角形的性质解答;(5)根据三角形的中线的概念、等腰三角形的性质、三角形的中位线定理以及全等三角形的判定和性质进行分析判断【详解】解:(1)在ADC和EDB中,ADCEDB(SAS),故选:B;(2)由(1)得:ADCEDB,ACBE6,在ABE中,ABBEAEAB+BE,即1062AD10+6,2AD8,故答案为:2AD8;(3)ADAB+DC;延长AE交DC延长线于点N, 点E是BC的中点,CEBE,ABCD,NCEABE,在NCE和ABE中,NCEABE(SAS),CNAB,BAEN,AE是BAD的平分线,BAEDAE,EADN,ADDNAB+DC; (4)延长AD到M,使ADDM,连接BM,如图所示:AEEFEF5,ACAE+EC5+38,AD是ABC中线,CDBD,在ADC和MDB中,ADCMDB(SAS),BMAC,CADM,AEEF,CADAFE,AFEBFD,BFDCADM,BFBMAC8;(5)取CE的中点F,连接BFABBE,CFEF,BFAC,BF0.5ACCBFACBACAB,ACBABCCBFDBC又CD是三角形ABC的中线,ACAB2BDBDBF又BCBC,BCDBCF,CFCDBCDBCECE2CD故B、C选项正确若要ACDBCE,则需ACBDCE,又ACBABCBCE+EDCE,则需EBCD根据全等,得BCDBCE,则需EBCE,则需BCBE,显然不成立,故A选项错误;若要CDCB,则需ABCD,也不一定成立,故D选项错误;故答案为:B、C【点睛】本题以阅读为背景考查了三角形的全等和四边形等知识,解题的关键是通过辅助线构造全等三角形2、(1),;(2)成立,证明见解析;(3)【分析】(1)由点E、F、D分别是AB、AC、BC的中点,可得,再由,得,由此即可得到答案;(2)连接,只需要证明,得到,即可得到结论;(3)连接AD,证明BDEADF得到,则,由此求解即可【详解】解:(1)点E、F、D分别是AB、AC、BC的中点,即,故答案为:,;(2)结论成立:,证明:如图所示,连接,D为BC的中点,且AD平分,在和中,即,即;(3)如图所示,连接AD,D为BC的中点,且AD平分,FAD=180°-CAD=135°,EBD=180°-ABC=135°,FAD=EBD,在在和中,BDEADF(SAS),【点睛】本题主要考查了三角形中位线定理,全等三角形的性质与判定,等腰直角三角形的性质等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件3、(1)相等,;(2)等边三角形,理由见解析;(3)【分析】(1)先证明由,得,再由三角形的中位线定理得与的数量关系,由平行线性质得的大小;(2)先证明得,再由三角形的中位线定理得,由平行线性质得,再根据等边三角形的判定定理得结论;(3)由,得,再由等边三角形的面积公式得的面积关于的函数关系式,再由函数性质求得最大值便可【详解】解:(1),点、分别为、的中点,故答案为:;(2)是等边三角形理由如下:由旋转可得,又,点、分别为、的中点,是等边三角形;(3)根据题意得,即,的面积,的面积的最大值为【点睛】本题是三角形的一个综合题,主要考查了等边三角形的判定,三角形的中位线定理,全等三角形的性质与判定,旋转的性质,解题的关键是证明三角形全等和运用三角形中位线定理使已知与未知联系起来4、(1);(2)12【分析】(1)把,代入多边形内角和公式求解即可;(2)根据多边形内角和公式及多边形外角和为,列出一元一次方程求解即可【详解】解:(1)当时,这个多边形的内角和为.(2)由题意,得,解得:,的值为12【点睛】本题考查了多边形的内角和与外角和问题及一元一次方程应用,解题的关键是牢记多边形的内角和与外角和5、(1)见解析;(2)2;(3)见解析【分析】(1)由ABC是等边三角形,可得ABC=60°,由D、F关于直线BE对称,得到BF=BD,则BFD=BDF,由三角形外角的性质得到BFD+BDF=ABD,则BDF=BFD=30°;(2)设,由D、F关于直线BE对称,得到BGD=BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性质和勾股定理得,证明EABDAC得到,再由,得到,由此求解即可;(3)连接OG,先求出,证明OG是三角形DMF的中位线,得到,再根据两点之间线段最短可知,则OE的最大值等于BC【详解】解:(1)ABC是等边三角形,ABC=60°,D、F关于直线BE对称,BF=BD,BFD=BDF,BFD+BDF=ABD,BDF=BFD=30°;(2)设,D、F关于直线BE对称,BGD=BGF=90°,EF=ED,EDG=EFG=45°,EG=DG,BDG=30°,由旋转的性质可得AE=AD,EAD=BAC=60°,EAB+BAD=CAD+BAD,即EAB=DAC,又AB=AC,EABDAC(SAS),;(3)如图所示,连接OG,在等腰直角三角形DMN中,D、F关于直线BE对称,G为DF的中点,又O为FM的中点,OG是三角形DMF的中位线,由(2)可得,根据两点之间线段最短可知,OE的最大值等于BC【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质

    注意事项

    本文(2021-2022学年度北师大版八年级数学下册第六章平行四边形必考点解析试卷(无超纲).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开