2021-2022学年基础强化京改版八年级数学下册第十五章四边形定向测试试题(含详细解析).docx
-
资源ID:30674366
资源大小:643.71KB
全文页数:32页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化京改版八年级数学下册第十五章四边形定向测试试题(含详细解析).docx
京改版八年级数学下册第十五章四边形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,点E,F分别是AB,AC的中点已知B55°,则AEF的度数是()A75°B60°C55°D40°2、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD3、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD4、下列说法中,正确的是( )A若,则B901.5°C过六边形的每一个顶点有4条对角线D疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查5、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD6、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是( )A5B6C8D107、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD28、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形9、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形10、如图,菱形OABC在平面直角坐标系中的位置如图所示,AOC45°,OA,则点C的坐标为()A(,1)B(1,1)C(1,)D(+1,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在矩形ABCD中,点E在AD边上,BCE是以BE为一腰的等腰三角形,若AB4,BC5,则线段DE的长为 _2、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_ 3、如图,在正方形ABCD中,AB2,取AD的中点E,连接EB,延长DA至F,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _4、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_5、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长2、已知:如图,在中,求证:互相平分如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断ACF的形状,并说明理由;(2)求ACF的面积;3、阅读材料,回答下列问题:(材料提出)“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成(探索研究)探索一:如图1,在八字形中,探索A、B、C、D之间的数量关系为 ;探索二:如图2,若B36°,D14°,求P的度数为 ;探索三:如图3,CP、AG分别平分BCE、FAD,AG反向延长线交CP于点P,则P、B、D之间的数量关系为 (模型应用)应用一:如图4,在四边形MNCB中,设M,N,+180°,四边形的内角MBC与外角NCD的角平分线BP,CP相交于点P则A (用含有和的代数式表示),P (用含有和的代数式表示)应用二:如图5,在四边形MNCB中,设M,N,+180°,四边形的内角MBC与外角NCD的角平分线所在的直线相交于点P,P (用含有和的代数式表示)(拓展延伸)拓展一:如图6,若设Cx,By,CAPCAB,CDPCDB,试问P与C、B之间的数量关系为 (用x、y表示P)拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,猜想P与B、D的关系,直接写出结论 4、如图,在平行四边形中,E是上一点(1)用尺规完成以下基本操作:在下方作,使得,交于点F(保留作图痕迹,不写作法)(2)在(1)所作的图形中,已知,求的度数5、如图,平行四边形ABCD中,对角线AC、BD相交于点O,ABAC,AB=3,AD=5,求BD的长-参考答案-一、单选题1、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键2、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键3、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90°, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键4、B【分析】由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.【详解】解:若,则故A不符合题意;90故B符合题意;过六边形的每一个顶点有3条对角线,故C不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;故选:B【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.5、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键7、B【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90°,1=2,DFG=90°,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90°,1+2+3+4=90°,22+23=90°,2+3=45°,即EDG=45°,EHDE,DEH=90°,DEH是等腰直角三角形,AED+BEH=AED+1=90°,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90°,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等8、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键9、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形10、B【分析】作CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C点的坐标【详解】:作CDx轴于点D,则CDO=90°,四边形OABC是菱形,OA=,OC=OA=,又AOC=45°,OCD=90°-AOC=90°-45°=45°,DOC=OCD,CD=OD,在RtOCD中,OC=,CD2+OD2=OC2,2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键二、填空题1、2.5或2【分析】需要分类讨论:BE1E1C,此时点E1是BC的中垂线与AD的交点;BEBC,在直角ABE中,利用勾股定理求得AE的长度,然后求得DE的长度即可【详解】解:当BE1E1C时,点E1是BC的中垂线与AD的交点,;当BCBE5时,在直角ABE中,AB4,则,综上所述,线段DE的长为2.5或2故答案是:2.5或2【点睛】本题考查矩形的性质和等腰三角形的性质,勾股定理,在此题中,没有确定等腰三角形的底边,所以需要分类讨论,以防漏解2、5cm或5.2cm【分析】当点P在BC上,AMBP,当点P在AB上,AMBP,当点P在CD上,如图,根据PB=AM,可证RtABMRtBCP(HL),可证BPAM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证RtABMRtBAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AMBP,当点P在AB上,AMBP,不合题意,舍去;当点P在CD上,如图,PB=AM四边形ABCD为正方形,AB=BC=AD=CD=8,在RtABM和RtBCP中,RtABMRtBCP(HL),MAB=PBC,MAB+AMB=90°,PBC+AMB=90°,BNM=180°-PBC-AMB=90°,BPAM,MC=2cm,BM=BC-MC=8-2=6cm,AM=,PN=BP-BN=AM-BN=10-4.8=5.2cm,当点P在AD上,如图,在RtABM和RtBAP中,RtABMRtBAP(HL),BM=AP,AMB=BPA,MAB=PBA,AN=BN,ADBC,PAN=NMB=APN,AN=PN=BN=MN,AM=BP=10cm,PN=cm,PN的长为5cm或5.2cm故答案为5cm或5.2cm【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键3、【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果【详解】解:设,四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长4、【分析】根据正方形的对角线平分一组对角线可得OCD=ODB=45°,正方形的对角线互相垂直平分且相等可得COD=90°,OC=OD,然后根据同角的余角相等求出COA=DOB,再利用“ASA”证明COA和DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到AOB是等腰直角三角形,再根据垂线段最短可得OACD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答【详解】解:如图,四边形CDEF是正方形,在与中,OA=OB,AOB=90°,AOB是等腰直角三角形,由勾股定理得: ,要使AB最小,只要OA取最小值即可,根据垂线段最短,OACD时,OA最小,正方形CDEF,FCCD,OD=OF,CA=DA,OA=,AB=【点睛】本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出AOB是等腰直角三角形是解题的关键5、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 【详解】解:20,能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键三、解答题1、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90°,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90°,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键2、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键(1)ACF是等腰三角形,理由见解析;(2)10;(3)3、A+BC+D; 25°;P;+180°,P; ;P;2PBD180°【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得BAPDAP,BCPDCP,结合(1)的结论可得2PB+D,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得A+180°,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案【详解】解:探索一:如图1,AOB+A+BCOD+C+D180°,AOBCOD,A+BC+D,故答案为A+BC+D;探索二:如图2,AP、CP分别平分BAD、BCD,12,34,由(1)可得:1+B3+P,2+P4+D,BPPD,即2PB+D,B36°,D14°,P25°,故答案为25°;探索三:由D+21B+23,由2B+232P+21,+得:D+2B+21+23B+23+2P+21D+2B2P+BP故答案为:P应用一:如图4,延长BM、CN,交于点A,M,N,+180°,AMN180°,ANM180°,A180°(AMN+ANM)180°(180°+180°)+180°;BP、CP分别平分ABC、ACB,PBCABC,PCDACD,PCDP+PBC,PPCDPBC(ACDABC)A,故答案为:+180°,;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,M,N,+180°,A180°,BP平分MBC,CP平分NCR,BP平分ABT,CP平分ACB,由应用一得:PA,故答案为:;拓展一:如图6,由探索一可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,Cx,By,CAPCAB,CDPCDB,CDBCABCBxy,PABCAB,PDBCDB,P+CABB+CDB,P+CDBC+CAB,2PC+B+(CDBCAB)x+y+(xy),P,故答案为:P;拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,PADBAD,PCD90°+BCD,由探索一得:B+BADD+BCD,P+PADD+PCD,×2,得:2P+BAD2D+180°+BCD,得:2PBD+180°,2PBD180°,故答案为:2PBD180°【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可4、(1)见解析;(2)【分析】(1)延长,在射线上截取两点,使得,作的垂线,交于点,在上截取,作的中垂线,交于点,则即为所求;(2)根据三角形的外角性质以及平行线的性质即可求得的度数【详解】(1)如图所示,根据作图可知,四边形是平行四边形,四边形是平行四边形则即为所求;(2),由(1)可知【点睛】本题考查了尺规作图-作垂线,平行四边形的性质,三角形的外角性质,平行线的性质,掌握基本作图是解题的关键5、【分析】根据平行四边形的性质可得,勾股定理求得,进而求得【详解】解:四边形是平行四边形 ABAC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键