精品解析2022年京改版七年级数学下册第六章整式的运算同步测评练习题(名师精选).docx
-
资源ID:30687566
资源大小:244.22KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年京改版七年级数学下册第六章整式的运算同步测评练习题(名师精选).docx
京改版七年级数学下册第六章整式的运算同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )ABCD2、化简x2(x+1)的结果是( )A-x-2B-x2Cx+2Dx-23、下列说法正确的是( )A单项式的次数是3,系数是B多项式的各项分别是,5C是一元一次方程D单项式与能合并4、下列判断正确的是()A3a2bc与bca2不是同类项B和都是单项式C单项式x3y2的次数是3D多项式3x2y+2xy2是三次三项式5、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )A1个B2个C3个D4个6、一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是()A66B99C110D1217、下列计算正确的是()Aa+babB7a+a7a2C3x2y2yx2x2yD3a(ab)2ab8、下列运算正确的是( )Ax2x22x4Bx2x3x6C(x2)3x6D(2x)24x29、下列式子正确的( )Ax(yz)xyzB(ab)(cd)abcdCx2(zy)x2y2D(xyz)xyz10、计算的结果是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两个边长都是1cm的菱形,如图所示连接在一起,一个微型机器人由点A开始按的顺序沿菱形的边循环移动,当微型机器人移动了2022cm时,机器人停在_点上2、如果x2-mx+16是一个完全平方式,那么m的值为_3、若a与b互为相反数,c与d互为倒数,则2a+2b+5cd_4、若一个多项式减去等于x1,则这个多项式是_5、若ab3,ab1,则(ab)2_三、解答题(5小题,每小题10分,共计50分)1、如图,现有A,B,C三个已化为最简结果的多项式,聪明的小明发现,其中两个多项式相减后正好等于第三个多项式,但后来多项式有一部分看不清楚了(1)小敏说:“小明说的是ACB”请你通过计算的结果判断小敏说的是否正确;(2)小嘉发现BCA满足小明发现的情况,求多项式B看不清楚的部分2、【教材呈现】图、图、图分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图、图中图形的面积关系的乘法公式: , (2)图是用四个长和宽分别为a、b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(ab)2、(ab)2、4ab之间的等量关系: 【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当mn5,mn4时,求mn的值 (4)当,Bm3时,化简(AB)2(AB)2 3、王老师在黑板上写下了四个算式:;认真观察这些算式,并结合你发现的规律,解答下列问题:(1) ; (2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律4、(1)已知多项式的值与字母x的取值无关,求多项式的值(2)当时,多项式的值为5,当时,多项式的值是多少?5、计算:-参考答案-一、单选题1、C【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案【详解】A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、,计算正确,故本选项正确;D、(,故本选项错误故选:C【点睛】本题考查同底数幂的乘法、幂的乘方以及合并同类项,掌握相关的运算法则是解题的关键2、A【分析】去括号合并同类项即可【详解】解:x2(x+1)=x-2x-2=-x-2故选A【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项3、C【分析】根据单项式的次数和系数的定义、多项式的项的定义、一元一次方程的定义和同类项的定义逐项判断即可【详解】A. 单项式的次数是4,系数是,故该选项错误,不符合题意;B. 多项式的各项分别是、-5,故该选项错误,不符合题意;C. 是一元一次方程,正确,符合题意;D. 单项式和不是同类项,不能合并,故该选项错误,不符合题意故选:C【点睛】本题考查单项式的次数和系数、多项式的项、一元一次方程和同类项正确掌握各定义是解答本题的关键4、D【分析】选项A根据同类项的定义判断即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;选项B、C根据单项式的定义判断即可,单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据多项式的定义判断即可,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式【详解】解:A、 3a2bc与bca2所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B、是多项式,故原说法错误,故本选项不合题意;C、单项式x3y2的次数是5,故本选项不合题意;D、多项式3x2y+2xy2是三次三项式,故本选项符合题意;故选:D【点睛】本题考查了同类项,单项式和多项式,熟记相关定义是解答本题的关键5、C【分析】根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可【详解】解:(1)整数与分数统称为有理数,说法正确;(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;(3)多项式是三次二项式,原说法错误;(4)倒数等于它本身的数是,说法正确;(5)与是同类项,说法正确;综上,说法正确的有(1)(4)(5),共3个,故选:C【点睛】本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数6、D【分析】先分别用代数式表示出原两位数和新两位数,然后根据整式的加减计算法则求出新两位数与原两位数的和,由此求解即可【详解】解:一个两位数个位上的数是1,十位上的数是x,这个两位数为,把1与x对调后的新两位数为,新两位数与原两位数的和一定是11的倍数,原两位数十位上的数字是x,(的正整数),新两位数与原两位数的和不可能是121,故选D【点睛】本题主要考查了整式加减的应用,解题的关键在于能够熟练掌握整式的加减计算法则7、C【分析】根据整式的加减运算法则和去括号法则即可求出答案【详解】解:A、a与b不是同类项,故不能合并,故A不符合题意B、7a+a8a,故B不符合题意C、3x2y2yx2x2y,故C符合题意D、3a(ab)3aa+b2a+b,故D不符合题意故选C【点睛】本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则8、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键9、B【分析】根据去括号法则逐项计算,然后判断即可【详解】解:A. x(yz)xy+z,原选项不正确,不符合题意;B. (ab)(cd)abcd,原选项正确,符合题意;C. x2(zy)x2y2 z,原选项不正确,不符合题意;D. (xyz)x+yz,原选项不正确,不符合题意;故选:B【点睛】本题考查了去括号法则,解题关键是熟记去括号法则,准确进行去括号10、A【分析】先计算乘方,再计算除法,即可求解【详解】解:故选:A【点睛】本题主要考查了幂的混合运算,熟练掌握幂的乘方,同底数相除的法则是解题的关键二、填空题1、G【分析】由于沿菱形的边循环移动一圈要走8cm,而20228×252+6,即微型机器人移动了2022cm时,共走了252圈加6cm,然后得到从A走4cm到G点【详解】解:2022÷82526,当微型机器人移动了2022cm时,它停在G点故答案为:G【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况2、±8【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值【详解】解:x2-mx+16=x2-mx+42,m=±2×4,解得m=±8故答案为:±8【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要3、5【分析】根据互为相反数的和为0,互为倒数的积为1,代入计算即可【详解】解:a与b互为相反数,c与d互为倒数,2a+2b+5cd;故答案为:5【点睛】本题考查了相反数和倒数,有理数的运算,解题关键是明确互为相反数的和为0,互为倒数的积为14、【分析】由一个多项式减去等于x1,求这个多项式,可列式为再合并同类项即可.【详解】解:一个多项式减去等于x1,所以这个多项式为: 故答案为:【点睛】本题考查的是减法的意义,整式的加减运算,正确的列出运算式进行计算是解本题的关键.5、5【分析】直接利用完全平方公式计算得出答案【详解】解:a+b=3,ab=1,(a+b)2=9,则a2+2ab+b2=9,a2+b2=9-2=7;(a-b)2=a2-2ab+b2=7-2=5故答案为:5【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键三、解答题1、(1)小敏说的不正确,理由见解析;(2)3x2-2x【解析】【分析】(1)利用整式的加减计算法则求出的结果,然后可得到A-C的结果的常数项是-10,而多项式B的常数项是6,即可作出判断;(2)由BCA,得到,由此利用整式的加减计算法则求解即可【详解】解:(1),A-C的结果的常数项是-10,而多项式B的常数项是6,小敏说的不正确; (2)BCA,B看不清的地方为【点睛】本题主要考查了整式的加减计算,熟知整式的加减计算法则是解题的关键2、(1),;(2);(3);(4)【解析】【分析】(1)根据图的面积可表示成以为边长的正方形的面积,或表示成2个分别以为边长的正方形的面积加上2个边长分别为的长方形的面积,即;根据图可以表示成边长为的正方形的面积等于边长为的正方形的面积减去2个边长分别为的长方形的面积再加上边长为的正方形的面积,即;(2)根据图可知,边长为的正方形的面积减去中间边长为的正方形的面积等于4个边长分别为的长方形的面积,据此即可写出代数式(ab)2、(ab)2、4ab之间的等量关系;(3)根据(2)的结论计算即可;(4)由(2)的结论可得,代入数值进行计算即可;【详解】(1)根据图可得:,根据图可得: 故答案为:,(2)根据图可得:故答案为:(3)(4),原式【点睛】本题考查了完全平方公式与图形的面积,根据完全平方公式变形求值,掌握完全平方公式是解题的关键3、(1),;(2)见解析【解析】【分析】(1)根据题目给出的规律写出和即可;(2)利用平方差公式计算得出答案【详解】(1),故答案为:,;(2),n为正整数,两个连续奇数的平方差是8的倍数【点睛】此题主要考查了平方差公式的应用,正确发现数字变化规律是解题关键4、(1)-9;(2)-1【解析】【分析】(1)利用多项式的定义得出m,n的值,进而代入求出即可;(2)把代入得,再将代入求出即可【详解】,由题意可得,所以,将去括号,得,合并同类项得,将,代入,得,所以代数式的值为解:把代入得,当时,【点睛】此题主要考查了整式的加减,多项式的定义,得出关于x系数之间关系是解题关键5、-x5【解析】【分析】先根据多项式乘以多项式法则和完全平方公式进行计算,再合并同类项即可【详解】解:(x+1)(x4)(x1)2x24x+x4x2+2x1-x5【点睛】本题考查了整式的混合运算,能正确根据运算法则进行化简是解此题的关键