2021-2022学年基础强化北师大版八年级数学下册第一章三角形的证明重点解析练习题(含详解).docx
-
资源ID:30689442
资源大小:1.17MB
全文页数:35页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化北师大版八年级数学下册第一章三角形的证明重点解析练习题(含详解).docx
北师大版八年级数学下册第一章三角形的证明重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,分别以点A和点C为圆心,大于AC的长为半径画弧交于两点,过这两点作直线交AC于点E,交BC于点D,连接AD若ADB的周长为15,AE4,则ABC的周长为()A17B19C21D232、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD2083、如图,在ABC中,BAC45°,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D34、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D305、如图,直线ab,直线ABAC,若152°,则2的度数是()A38°B42°C48°D52°6、下列命题的逆命题是假命题的是()A同旁内角互补,两直线平行B对于有理数a,如果3a0,那么a0C有两个内角互余的三角形是直角三角形D在任何一个直角三角形中,都没有钝角7、如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点M,作直线MN交AB于点D,交AC于点E,连接CD若AC6,AB8,BC4,则BEC的周长( )A10B12C8D148、如图,在RtABC中,C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则BCM的周长为()A18B16C17D无法确定9、如图,在ABC中, ABC和ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作ODAC于D,下列四个结论:EF=BE+CF; ;点O到ABC各边的距离相等;设OD=m, ,则SAEF=mn其中正确的结论个数是( )A1个B2个C3个D4个10、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D18第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,C90°,ACBC,AD平分CAB,如果CD1,那么BD_2、如图,ABC中,AB平分DAC,ABBC,垂足为B,若ADC与ACB互补,BC5,则CD的长为_3、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是_4、如图,平分,为上的任意一点,交于点,于点,若,则的长为_5、如图,在四边形ABCE中,BA,E90°,点D在AB上,ADBD511,连接CD,若点D在CE的垂直平分线上且满足A2BDC,CE10,则线段AB的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,按以下步骤作图:分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;作直线MN交AC于点D,连接BD若AC=6,AB=4,求ABD的周长2、如图,在ABC中,AB=AC,CDAB于点D,A=50°,求BCD的度数3、如图,在平面直角坐标系中,点O为坐标原点,点B0,n,点A在x轴的负半轴上,点Cm,0,连接AB、BC,且m+2+n-2=0,(1)求BCO的度数;(2)点P从A点出发沿射线AO以每秒2个单位长度的速度运动,同时,点Q从B点出发沿射线BO以每秒1个单位长度的速度运动,连接AQ、PQ,设APQ的面积为S,点P运动的时间为,求用表示S的代数式(直接写出的取值范围);(3)在(2)的条件下,当点P在x轴的正半轴上,点Q在y轴的负半轴上时,连接AQ、PQ,BQP=2ABC=2OAQ,且四边形ABPQ的面积为25,求PQ的长4、中,CD平分,点E是BC上一动点,连接AE交CD于点D(1)如图1,若,AE平分,则的度数为_;(2)如图2,若,则的度数为_;(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,试判断AB与CF的位置关系,并证明你的结论5、在ABC中,B=90°,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当BAC=50°时,则AED=_°;(2)当时,如图2,连接AD,判断AED的形状,并证明;如图3,直线CF与ED交于点F,满足CFD=CAEP为直线CF上一动点当PE-PD的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明-参考答案-一、单选题1、D【分析】由题意知,DE是线段AC的垂直平分线,据此得AD=CD,AE=EC,再由AB+BD+AD=15知AB+BD+CD=15,即AB+BC=15,结合AE=4可得答案【详解】解:由题意知,DE是线段AC的垂直平分线,AD=CD,AE=EC,AB+BD+AD=15,AB+BD+CD=15,即AB+BC=15,AE=4,即AC=2AE=8,ABC的周长为AB+BC+AC=15+8=23,故选:D【点睛】本题主要考查作图基本作图,线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键2、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键3、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135°,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过点C作CNAB于点N,连接EN,CNA90°,BAC45°,NCAA45°,ANCN,点E是AC的中点,ANECNE45°,CENAEN90°,CEF+FEN90°,CDBE,CFE90°,CEF+FCE90°,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135°,AED45°AACN,ADDE,AECE,AE=EN,ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解4、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键5、A【分析】利用直角三角形的性质先求出B,再利用平行线的性质求出2【详解】解:ABAC,152°,B90°190°52°38°ab,2B38°故选:A【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键6、D【分析】先写出每个选项中的逆命题,然后判断真假即可【详解】解:A、同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,是真命题,不符合题意;B、对于有理数a,如果3a0,那么a0的逆命题为:对于有理数a,如果a0,则3a0,是真命题,不符合题意;C、有两个内角互余的三角形是直角三角形的逆命题为:直角三角形有两个内角互余的,是真命题,不符合题意;D、在任何一个直角三角形中,都没有钝角的逆命题为:没有钝角的三角形是直角三角形,是假命题,符合题意;故选D【点睛】本题主要考查了逆命题,判定命题真假,解题的关键在于能够熟知相关知识进行求解7、A【分析】由垂直平分线的性质得,故的周长为,计算即可得出答案【详解】由题可知:为的垂直平分线,故选:A【点睛】本题考查垂直平分线的性质,掌握垂直平分线上的点到线段两端的距离相等是解题的关键8、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可【详解】解:在RtABC中,C=90°,AC=12,AB=13,由勾股定理得,MN是AB的垂直平分线,MB=MA,BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键9、C【分析】根据ABC和ACB的平分线相交于点O和三角形的内角和等于180°,可得;再由ABC和ACB的平分线相交于点O和EFBC,可得EOB=OBE,FOC=OCF,从而得到BE=OE,CF=OF,进而得到;过点O作OMAB于M,作ONBC于N,连接OA,根据角平分线的性质定理,可得点到各边的距离相等;又由AE+AF=n,可得SAEF=SAOE+SAOF=mn,即可求解【详解】解:在ABC中,ABC和ACB的平分线相交于点O,OBC=ABC,OCB=ACB,ABC+ACB=180°-A,OBC+OCB=(ABC+ACB)=90°-ABOC=180°-(OBC+OCB)=90°+A,故正确;在ABC中,ABC和ACB的平分线相交于点O,OBC=OBE,OCB=OCF,EFBC,OBC=EOB,OCB=FOC,EOB=OBE,FOC=OCF,BE=OE,CF=OF,EF=OE+OF=BE+CF,故正确;过点O作OMAB于M,作ONBC于N,连接OA,又在ABC中,ABC和ACB的平分线相交于点O,ON=OD=OM=m,即点O到ABC各边的距离相等,故正确;AE+AF=n,SAEF=SAOE+SAOF=AE×OM+AF×OD=OD×(AE+AF)=mn,故错误;综上所述,正确的结论有3个故选:C【点睛】本题主要考查了角平分线性质定理,等腰三角形的性质等知识,熟练掌握角平分线上的点到角两边的距离相等是解题的关键10、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=7×2=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解二、填空题1、【分析】过点D作DEAB于E,根据角平分线上的点到角的两边的距离相等可得DECD,再求出BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答【详解】解:如图,过点D作DEAB于E,AD平分CAB,C90°,DECD1,ACBC,C90°,B45°,BDE是等腰直角三角形,BDDE故答案为:【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的直角边与斜边的关系2、10【分析】构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得E=CDE,则CE=2BC=10【详解】解:延长AD.和CB交于点E.AB平分DACEAB=CAB又ABE=ABC又AB=ABBC=EB=5,E=ACB, 又ACB=CDEE=CDE.CD=CE又CE=2BC=10CD=10故答案为:10【点睛】本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键3、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论【详解】解:当为底时,其它两边都为,、可以构成三角形,周长为;当为底时,其它两边都为,、可以构成三角形,周长为;故答案为:或【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要4、3【分析】过点作于,根据角平分线上的点到角的两边距离相等可得,根据角平分线的定义可得,根据两直线平行,内错角相等可得,两直线平行,同位角相等可得,再求出,根据等角对等边可得,然后根据直角三角形角所对的直角边等于斜边的一半可得【详解】解:如图,过点作于,平分,平分,故答案为:3【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,等边对等角,掌握含30度角的直角三角形的性质是解题的关键5、【分析】根据题意过点D作DGEC,CFAB,连接AC、DE,先证明ADEBCD和GDCFDC,进而设AD=BC=5x,AE= BD=11x,AF=y,则BF=16x-y,通过勾股定理建立方程求解即可.【详解】解:过点D作DGEC,CFAB,连接AC、DE,点D在CE的垂直平分线上,DGEC,DE=DC,AEC90°,DGEC,EAD2BDC,BEAD,DE=DC,ADEBCD,AE=BD,DGEC,CFAB,CD=CD,GDCFDC,又CE10,CG=CE,CF=CG=5, ADBD511,设AD=BC=5x,AE= BD=11x,AF=y,则BF=16x-y,由勾股定理AC2=AE2+CE2=CF2+AF2得到121x2+100=25+y2由勾股定理得BC2=CF2+BF2得到25x2=25+(16x-y)2联立可解得,.故答案为:.【点睛】本题考查全等三角形的判定与性质以及勾股定理的应用和垂直平分线性质,熟练掌握通过垂直平分线性质和角平分线性质构造全等三角形是解题的关键.三、解答题1、10【分析】依据垂直平分线的性质得周长转化为即可求解【详解】解:由已知作图方法可得,是线段的垂直平分线,所以,因为,所以,因此,的周长是10【点睛】本题主要考查中垂线性质,解题的关键是掌握中垂线上一点到线段两端点距离相等,将所求周长转化为的和即可2、25°【分析】直接利用等腰三角形的性质得出ABC=ACB=65°,进而利用三角形内角和定理得出答案【详解】AB=AC,A=50°,ABC=ACB=65°,CDBC于点D,BCD的度数为:180°90°65°=25°【点睛】此题主要考查了等腰三角形的性质,正确得出B的度数是解题关键3、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)当点在轴正半轴时,如图, ,当点在原点时,都在轴上,不能构成三角形,则时,不存在当点在轴负半轴时,如图, , ,综上所述:(3)如图,过点作,连接,设,则, 是等腰直角三角形在和中,是等腰直角三角形中,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键4、则该直线的解析式为:y=x+令x=0,则y=5,即B(0,5);(2)由(1)知,C(-3,2)如图1,设Q(a,-a)SQAC=2SAOC,SQAO=3SAOC,或SQAO=SAOC,当Q在第二象限即SQAO=3SAOC时,OAyQ=3×OAyC,yQ=3yC,即-a=3×2=6, 解得 a=-9,Q(-9,6);当Q在第四象限SQAO=SAOC时,OAyQ=OAyC,yQ=2yC,即a=2,解得 a=3(舍去负值),Q(3,-2);综上,点Q的坐标为(-9,6)或(3,-2);(3)如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;如图3,作P1FCD于F,P1EOC于E,作P2HCD于H,P2GOC于GC(-3,2),A(-5,0),AC=,P2H=P2G,P2HCD,P2GOC,CP2是OCD的平分线,OCP2=DCP2,AP2C=AOC+OCP2,ACP2=ACD+DCP2,ACP2=AP2C,AP2=AC,A(-5,0),P2(-5+2,0)同理:P1(-5-2,0)综上,点P的坐标为(-5-2,0)或(-5+2,0)【点睛】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强5(1)40°;(2)10°;(3)ABCF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得BAC+ACB=140°即可求解;(2)根据三角形的外角性质求得B+BAE=47°即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到FCG=2F,再根据角平分线的定义和等角的余角相等得到BCF=2F,则有B=BCF,根据平行线在判定即可得出结论【详解】解:(1)ADC=110°,DAC+DCA=180°110°=70°,AE平分BAC,CD平分ACB,BAC=2DAC,ACB=2DCA,BAC+ACB=2(DAC+DCA)=140°,B=180°(BAC+ACB)=180°140°=40°,故答案为:40°;(2)ADC=DCE+DEC=100°,DCE=53°,DEC=100°53°=47°,B+BAE=DEC=47°,BBAE=27°,BAE=10°,故答案为:10°;(3)ABCF,理由为:如图,延长AC到G,AC=CF,F=FAC,FCG=F+FAC=2F,CFCD,BCF+BCD=90°,FCG+ACD=90°,CD平分ACB,BCD=ACD,BCF=FCG=2F,B=2F,B=BCF,ABCF【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键5、(1)80;(2)是等边三角形;(3)【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30°直角三角形性质可知即可得出结论【详解】解:(1)点E为线段AC,CD的垂直平 分线的交点,在中,故答案为:(2)结论:是等边三角形证明:在中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上,由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, ,(SAS),在中,【点睛】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形