欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年最新人教版九年级数学下册第二十七章-相似章节训练试卷(无超纲带解析).docx

    • 资源ID:30694562       资源大小:487.08KB        全文页数:28页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年最新人教版九年级数学下册第二十七章-相似章节训练试卷(无超纲带解析).docx

    人教版九年级数学下册第二十七章-相似章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC相似的是( )ABCD2、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A2:3B4:9C:D16:813、甲、乙两城市的实际距离为500km,在比例尺为1:10000000的地图上,则这两城市之间的图上距离为( )A0.5cmB5cmC50cmD500cm4、如图的两个四边形相似,则a的度数是( )A120°B87°C75°D60°5、若2a3b,则的值为()ABCD6、如图, 点 是线段 的中点, , 下列结论中, 说法错误的是( )A 与 相似B 与 相似CD7、下列图形一定是相似图形的是()A两个矩形B两个等腰三角形C两个直角三角形D两个正方形8、下列各线段的长度成比例的是( )A2、5、6、8B1、2、3、4C3、6、7、9D3、6、9、189、如图,在RtABC中,A90°点D在AB边上,点E在AC边上,满足CDE45°,AEDB若DE1,BC7,则( )A2B4C5D610、如图,在ABC中,AC=3,BC=6,D为BC边上的一点,且BAC=ADC若ADC的面积为a,则ABC的面积为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,、交于点,且,当_时,与相似2、两个相似三角形对应边上的高的比是2:3,那么这两个三角形面积的比是 _3、如图,直线与x轴、y轴分别交于点B、A,点C是x轴上一动点,以C为圆心,为半径的作,当与直线AB相切时,点C的坐标为_4、如图,矩形ABCD中,AD4,AB10,P为CD边上的动点,当DP_时,ADP与BCP相似5、如图,在RtABC中,ACB=90°,BC=3,AC=4,F为AB上的点,联结CF.将ACF沿直线CF翻折,点A的对称点为E,若EFCB,则FE=_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,AB15,AE6,EC4(1)求AD的长(2)试说明成立2、定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”如图1,ABC中,点D是BC边上一点,连接AD,若AD2BDCD,则称点D是ABC中BC边上的“好点”(1)如图2,ABC的顶点是4×4网格图的格点,请在图中画出AB边上的“好点”;(2)如图3,ABC是O的内接三角形,点H在AB上,连接CH并延长交O于点D若点H是BCD中CD边上的“好点”求证:OHAB;若OHBD,O的半径为r,且r3OH,求的值3、如图,在平行四边形ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,延长EO交AD于点G(1)求证:AOGCOF;(2)若AB3,BC4,CE2,则CF 4、例2如图,在ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G,求证:证明:连结ED请根据教材提示,结合图,写出完整的证明过程【结论应用】如图,在ABC中,D、F分别是边BC、AB的中点,AD、CF相交于点G,GEAC交BC于点E,则DE:BC 5、如图,ABD中,A90°,AB6cm,AD12cm某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D出发沿DA方向以2cm/s的速度向点A匀速运动,运动的时间为ts(1)求t为何值时,AMN的面积是ABD面积的;(2)当以点A,M,N为顶点的三角形与ABD相似时,求t值-参考答案-一、单选题1、B【解析】【分析】根据正方形的性质求出,根据相似三角形的判定定理判断即可【详解】解:由正方形的性质可知,、图形中的钝角都不等于,由勾股定理得,对应的图形中的边长分别为1和,图中的三角形(阴影部分)与相似,故选:B【点睛】本题考查的是相似三角形的判定,解题的关键是掌握两组对应边的比相等且夹角对应相等的两个三角形相似2、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案【详解】解:两个相似多边形的周长比是2:3,这两个相似多边形的相似比是2:3,它们的面积比是4:9,故选B【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键3、B【解析】【分析】先将千米换单位为厘米,然后设这两城市之间的图上距离为,根据比例计算即可得【详解】解:,设这两城市之间的图上距离为,则:,解得:,故选:B【点睛】题目主要考查比例的计算,理解题意,注意单位变换是解题关键4、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360°,即可求解【详解】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360°, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键5、D【解析】【分析】等式两边都除以即可【详解】解:两边都除以得,故选:D【点睛】本题考查了比例的性质,解题的关键是主要利用了两内项之积等于两外项之积的性质6、D【解析】【分析】根据外角的性质可得,结合已知条件即可证明,从而判断A,进而可得,根据是中点,代换,进而根据两边成比例夹角相等可证,进而判断B,C,对于D选项,利用反证法证明即可【详解】解:,又故A选项正确为的中点又故B、C选项正确若则根据现有条件无法判断,故故D选项不正确故选:D【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键7、D【解析】【分析】根据相似图形的定义,结合选项,用排除法求解【详解】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B、两个等腰三角形顶角不一定相等,故不符合题意C、两个直角三角形,只有一个直角相同,锐角不一定相等,故不符合题意;D、两个正方形,符合角分别对应相等,边分别对应成比例,符合相似性定义,故符合题意;故选:D【点睛】本题考查的是相似图形的概念,掌握“角分别对应相等,边分别对应成比例的两个多边形相似”是解本题的关键.8、D【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,据此进行判断即可【详解】解:A、2×85×6,故本选项错误;B、1×42×3,故本选项错误;C、3×96×7,故本选项错误;D、3×18=6×9,故本选项正确故选:D【点睛】考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等9、A【解析】【分析】根据ADEACB,得到AC=7AD,AB=7AE,过点E作EFDC,垂足为F,由CDE45°,DE1,CFECAD,得到EF,DF,FC,DC的长,计算面积即可【详解】如图,过点E作EFDC,垂足为F,AEDB,AA,ADEACB,AD:AC= AE:AB= DE:BC=1:7,AC=7AD,AB=7AE,CDE45°,DE1,EF=DF=,EFCDAC,ECFDCA,CFECAD,EF:DA= CF:CA, EF:CF= DA:CA =1:7, CF=,CD=,=2,故选【点睛】本题考查了三角形的相似与性质,勾股定理,熟练掌握三角形相似的判定是解题的关键10、A【解析】【分析】证得ABCDAC后由面积比为相似比的平方即可求得ABC的面积【详解】BAC=ADC,C=CABCDAC又AC=3,BC=6AC:BC=1:2ABCDAC相似比为2:1则ABCDAC面积比为4:1DAC的面积为aABC的面积为4a故选:A【点睛】本题考查了相似三角形判断及性质,相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比,相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方二、填空题1、故答案为:2【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成比例是解答的关键454或37.5【解析】【分析】分两种情况考虑:AOCBOD;AOCDOB,利用相似三角形的性质即可求得OA的值【详解】当AOCBOD时,当AOCDOB时,综上得:OA=54或37.5故答案为:54或37.5【点睛】本题考查了相似三角形的性质,不过要分两种情况考虑,千万别忽略了其中一种情况2、#【解析】【分析】根据对应高的比等于相似比,相似三角形的面积比等于相似比的平方解答【详解】解:相似三角形对应高的比等于相似比,两三角形的相似比为2:3,两三角形的面积比为4:9故答案为:4:9或 【点睛】本题考查对相似三角形性质的理解,相似三角形对应高的比等于相似比3、或#(7,0)或(-3,0)【解析】【分析】分两种情况:设C(0,t),作CMAB于M,如图,利用勾股定理计算出AB=,利用切线的性质得CMO=90°,证明BMCBOA,利用相似比可计算出t=-3;同样证明BNCBOA,利用相似三角形的性质计算出t=7,从而得到C点坐标【详解】解:当点C在x轴的负半轴上,设C(t,0),作CMAB于M,如图,对于,当x=0时,y=1;当y=0时,x=2A(0,1),B(2,0)OA=1,OB=2,BC=2-t由勾股定理得, 直线AB与圆C相切,CMB=90°又,BMCBOA,即 解得, 点C的坐标为(-3,0)当点C在x轴的正半轴上,设C(t,0),作CNAB于N,如图,BC=t-2, BNCBOA,即 解得, 点C的坐标为(7,0)综上,点C的坐标为(-3,0)或(7,0)故答案为(-3,0)或(7,0)【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点也考查了坐标与图形性质和分类讨论思想的应用以及相似三角形的判定与性质4、2或5或8【解析】【分析】分两种情况:ADPPCB及ADPBCP,再由相似三角形的性质即可求得DP的值【详解】四边形ABCD是矩形BC=AD=4,CD=AB=10 当ADPPCB时,即DP(10DP)=16即解得:DP=2或DP=8当ADPBCP时, DP=PCDP+PC=10DP=5综上所述,当DP的长为2或5或8时,ADP与BCP相似故答案为:2或5或8【点睛】本题考查了矩形的性质,相似三角形的性质,分类讨论思想的运用,特别注意这里有两种情况,不要忽略任意一种情形5、2【解析】【分析】根据勾股定理求出,由等面积法求出,根据相似三角形判定证明,由性质建立等式求出即可【详解】解:根据题意作图如下:由勾股定理得:,根据折叠的性质得:,解得:,即,解得:,故答案是:2【点睛】本题考查了折叠问题,三角形相似、勾股定理,解题的关键是添加辅助线,构造相似三角形三、解答题1、(1)AD=9;(2)见解析【解析】【分析】(1)利用ADDB=AEEC和比例性质直接计算出AD;(2)根据比例的性质由ADDB=AEEC得到ABDB=ACEC,然后再利用比例性质即可得到DBAB=ECAC【详解】解:(1)ADDB=AEEC,AD15-AD=64,AD=9;(2)ADDB=AEEC,AD+DBDB=EC+AEEC,即ABDB=ACEC,DBAB=ECAC【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例也考查了比例的性质2、(1)作图见解析;(2)证明见解析;【解析】【分析】(1)由“好点”定义知;在中,在线段上;若与全等,可得,此时可以得出点为中,垂线与线段的交点,即“好点”;在中,由斜边上的中线等于斜边的一半,可知当为线段的中点时,有,为“好点”进而得出直角三角形的“好点”是斜边上的垂足与斜边的中点(2)由同弧所对圆周角相等可知 , ;可得;点为 中边上的“好点”,故有;可知,故点为边的中点,进而由垂径定理可证,连接,为直径;设,;在,;在,;由可得,进而求出的值【详解】解:(1)如答图1所示过点向线段做垂线,交点为斜边上的垂足为“好点”连接与线段的中点 为的中线斜边上的中点为“好点”综上所述,斜边上的垂足与斜边上的中点为“好点”(2)证明:由题意可知 ,又点为 中边上的“好点”有点为边的中点由垂径定理可证解:如答图2,连接,为直径设,在,在,又【点睛】本题考察了直角三角形中垂线与中线的性质、三角形相似、垂径定理、圆周角、勾股定理等知识点解题的关键与难点在于理解新定义与所学知识的连接,是否能灵活运用已有知识3、(1)见解析;(2)87【解析】【分析】(1)由“ASA”可证AOGCOF;(2)通过证明CFEDGE,可得CFGD=CEDE,即可求解【详解】(1)证明:四边形ABCD是平行四边形,AOCO,ADBC,CADACB,在AOG和COF中,DAC=ACBAO=COAOG=COF,AOGCOF(ASA);(2)解:ADBC,CFEDGE,CFGD=CEDE,CFAD-CF=CECD+CE,CF4-CF=23+2,CF87【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握图形的性质是解答本题的关键4、(1)见解析;(2)1:6【解析】【分析】(1)连接ED,根据三角形中位线定理得到EDAC,DEAC,证明DEGACG,根据三角形相似的性质证明结论;(2)先证明DGEDAC,得到DE=13DC,由D是AD的中点,可推出DE=16BC,由此即可得到答案【详解】解:(1)如图,连接ED,D,E分别是边BC,AB的中点,DE是ABC的中位线,EDAC,DEAC,DEGACG,EGCG=DGAG=EDAC=12,(2)GEAC,DGEDAC,DEDC=DGAD=13,DE=13DC,D是AD的中点,BC=2DC,DE=16BC,DE:BC=1:6,故答案为:1:6【点睛】本题主要考查了三角形中位线定理,相似三角形的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件5、(1)t1=4,t2=2;(2)t3或【解析】【分析】(1)由题意得DN2t(cm),AN(122t)cm,AMtcm,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值【详解】解:(1)由题意得DN2t(cm),AN(122t)cm,AMtcm,AMN的面积12ANAM12×(122t)×t6tt2,A90°,AB6cm,AD12cmABD的面积为12ABAD12×6×1236,AMN的面积是ABD面积的29,6tt229×36,t26t+80,解得t14,t22,答:经过4秒或2秒,AMN的面积是ABD面积的29;(2)由题意得DN2t(cm),AN(122t)cm,AMtcm,若AMNABD,则有AMAB=ANAD,即t6=12-2t12,解得t3,若AMNADB,则有AMAD=ANAB,即t12=12-2t6,解得t,答:当t3或时,以A、M、N为顶点的三角形与ABD相似【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键

    注意事项

    本文(2022年最新人教版九年级数学下册第二十七章-相似章节训练试卷(无超纲带解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开