2021-2022学年京改版八年级数学下册第十五章四边形章节训练练习题(含详解).docx
-
资源ID:30699908
资源大小:1.01MB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年京改版八年级数学下册第十五章四边形章节训练练习题(含详解).docx
京改版八年级数学下册第十五章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是2、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD3、下图是文易同学答的试卷,文易同学应得( )A40分B60分C80分D100分4、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD5、在平行四边形ABCD中,A30°,那么B与A的度数之比为( )A4:1B5:1C6:1D7:16、如图,菱形OABC在平面直角坐标系中的位置如图所示,AOC45°,OA,则点C的坐标为()A(,1)B(1,1)C(1,)D(+1,1)7、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD8、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A7B8C9D109、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾10、下列几何图形既是轴对称图形又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB3,BC4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,PAB的面积为_2、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_3、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点若,则图中影部分的面积和为 _(结果保留根号和4、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_5、如图,每个小正方形的边长都为1,ABC是格点三角形,点D为AC的中点,则线段BD的长为 _三、解答题(5小题,每小题10分,共计50分)1、已知:如图:五边形ABCDE的内角都相等,DFAB(1)则CDF (2)若EDCD,AEBC,求证:AFBF2、如图,已知ACB中,ACB90°,E是AB的中点,连接EC,过点A作ADEC,过点C作CDEA,AD与CD交于点D(1)求证:四边形ADCE是菱形;(2)若AB8,DAE60°,则ACB的面积为 (直接填空)3、ABC为等边三角形,AB4,ADBC于点D,E为线段AD上一点,AE以AE为边在直线AD右侧构造等边AEF连结CE,N为CE的中点(1)如图1,EF与AC交于点G,连结NG,求线段NG的长;连结ND,求DNG的大小(2)如图2,将AEF绕点A逆时针旋转,旋转角为M为线段EF的中点连结DN、MN当30°120°时,猜想DNM的大小是否为定值,并证明你的结论4、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形画出所有情况(给出的图形不一定全用,不够可添加)5、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45°,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180°,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180°,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 -参考答案-一、单选题1、D【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键2、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键3、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,文易同学答对3道题,得60分,故选:B【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键4、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为×ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用5、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180°-A=150°,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补6、B【分析】作CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C点的坐标【详解】:作CDx轴于点D,则CDO=90°,四边形OABC是菱形,OA=,OC=OA=,又AOC=45°,OCD=90°-AOC=90°-45°=45°,DOC=OCD,CD=OD,在RtOCD中,OC=,CD2+OD2=OC2,2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键7、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形8、D【分析】根据多边形外角和定理求出正多边形的边数【详解】正多边形的每一个外角都等于36°,正多边形的边数10故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握9、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D【点睛】本题考查了中心对称图形与轴对称图形的概念解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、或或3【分析】过B作BMAC于M,根据矩形的性质得出ABC90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:ABBP3,ABAP3,APBP,分别画出图形,再求出面积即可【详解】解:四边形ABCD是矩形,ABC90°,由勾股定理得:,有三种情况:当ABBP3时,如图1,过B作BMAC于M,SABC,解得:,ABBP3,BMAC,APAM+PM,PAB的面积;当ABAP3时,如图2,BM,PAB的面积S;作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则APBP,BNAN,四边形ABCD是矩形,NQAC,PNBC,ANBN,APCP,PAB的面积;即PAB的面积为或或3故答案为:或或3【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键2、【分析】根据正方形的对角线平分一组对角线可得OCD=ODB=45°,正方形的对角线互相垂直平分且相等可得COD=90°,OC=OD,然后根据同角的余角相等求出COA=DOB,再利用“ASA”证明COA和DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到AOB是等腰直角三角形,再根据垂线段最短可得OACD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答【详解】解:如图,四边形CDEF是正方形,在与中,OA=OB,AOB=90°,AOB是等腰直角三角形,由勾股定理得: ,要使AB最小,只要OA取最小值即可,根据垂线段最短,OACD时,OA最小,正方形CDEF,FCCD,OD=OF,CA=DA,OA=,AB=【点睛】本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出AOB是等腰直角三角形是解题的关键3、【分析】设的中点为,连接,先求出,则,然后求出,最后根据求解即可【详解】解:设的中点为,连接,四边形ABCD是矩形,ABC=90°,又CAB=30°,故答案为:【点睛】本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到4、10【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90°, FEAD,AFE=B=A=90°,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键5、#【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:,ABC90°,点D为AC的中点,BD为AC边上的中线,BDAC,故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出ABC是直角三角形是解题的关键三、解答题1、(1)54°;(2)见解析【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出CDF的度数;(2)连接AD、DB,然后证明DEADCB可得ADDB,再根据等腰三角形的性质可得AFBF【详解】解:(1)五边形ABCDE的内角都相等,CBEDC180°×(52)÷3108°,DFAB,DFB90°,CDF360°90°108°108°54°,故答案为:54°(2)连接AD、DB,在AED和BCD中,DEADCB(SAS),ADDB,DFAB,AFBF【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键2、(1)见解析;(2)【分析】(1)由AD/CE,CD/AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;(2)由菱形的性质可得当DAE=60°时,CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可【详解】解:(1),四边形是平行四边形,是的中点,四边形是菱形;(2)四边形是菱形,在Rt中, 【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键3、(1);(2)的大小是定值,证明见解析【分析】(1)先根据等边三角形的性质、勾股定理可得,从而可得,再利用勾股定理可得,然后根据等边三角形的性质可得,最后根据直角三角形斜边上的中线等于斜边的一半即可得;先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据四边形的内角和即可得;(2)连接,先证出,根据全等三角形的性质可得,从而可得,再根据三角形中位线定理可得,然后根据三角形的外角性质、角的和差即可得出结论【详解】解:(1)是等边三角形,是等边三角形,即,又点为的中点,;如图,连接,由(1)知,点为的中点,;(2)的大小是定值,证明如下:如图,连接,和都是等边三角形,即,在和中,点为的中点,点为的中点,即点是的中点,的大小为定值【点睛】本题考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和利用到三角形中位线定理是解题关键4、见解析【分析】根据中心对称图形的概念求解即可中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】解:如图所示,一共有三种情况:【点睛】此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形5、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,可得到点M'、C、N三点共线,再由MBN=45°,可得M'BN=MBN,从而证得NBMNBM',即可求解;(2)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,由A+C180°,可得点M'、C、N三点共线,再由MBNABC,可得到M'BN=MBN,从而证得NBMNBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由ABC+ADC180°,可得BAM=C,再由ABBC,可证得ABMCB M',从而得到AM=C M',BM=B M',ABM=CB M',进而得到MA M'=ABC,再由MBNABC,可得MBNM'BN,从而得到NBMNBM',即可求解【详解】解:(1)如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,在正方形ABCD中,A=BCD=ABC=90°,AB=BC ,BCM'+BCD=180°,点M'、C、N三点共线,MBN=45°,ABM+CBN=45°,M'BN=M'BC+CBN=ABM+CBN=45°,即M'BN=MBN,BN=BN,NBMNBM',MN= M'N,M'N= M'C+CN,MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,A+C180°,BCM'+BCD=180°,点M'、C、N三点共线,MBNABC,ABM+CBN=ABCMBN,CBN+M'BC =MBN,即M'BN=MBN,BN=BN,NBMNBM',MN= M'N,M'N= M'C+CN,MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',在四边形ABCD中,ABC+ADC180°,C+BAD=180°,BAM+BAD=180°,BAM=C,ABBC,ABMCB M',AM=C M',BM=B M',ABM=CB M',MA M'=ABC,MBNABC,MBNMA M'=M'BN,BN=BN,NBMNBM',MN= M'N,M'N=CN-C M', MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键