2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节练习试卷.docx
-
资源ID:30707751
资源大小:324.75KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节练习试卷.docx
北师大版八年级数学下册第五章分式与分式方程章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、近几年鞍山市的城市绿化率逐年增加,其中2019年,2020年,2021年鞍山的城市绿化面积分别是,2021年与2020年相比,鞍山城市绿化的增长率提高( )ABCD2、已知关于x的分式方程3的解是x3,则m的值为()A3B3C1D13、代数式,中,分式的个数为()A1B2C3D44、在代数式,中,分式的个数为( )A2B3C4D55、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD6、下列说法正确的是( )A若A、B表示两个不同的整式,则一定是分式B如果将分式中的x和y都扩大到原来的3倍,那么分式的值不变C单项式是5次单项式D若,则7、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD8、飞沫一般认为是直径大于5微米(5微米0.000005米)的含水颗粒飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离将0.000005用科学记数法表示应为( )ABCD9、下列分式中是最简分式的是()ABCD10、下列分式中,是最简分式的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式的值为零,则x_2、=÷_3、计算:_4、 “有一种速度叫中国速度,有一种骄傲叫中国高铁”快速发展的中国高速铁路,正改变着中国人的出行方式下表是从北京到上海的两次列车的相关信息:出行方式出发站到达站路程平均速度特快列车T109北京上海全程1463km98 km/h高铁列车G27北京南上海虹桥全程1325kmx km/h已知从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟设G27次高铁列车的平均速度为x km/h,根据题意可列方程为_5、当时,计算的结果等于_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中2、解答(1)计算:(2)解方程:3、计算:4、阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(真分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效将分式分离常数可类比假分数变形带分数的方法进行,如:,这样,分式就拆分成一个分式与一个整式的和的形式根据以上阅读材料,解答下列问题:(1)若x为整数,为负整数,可求得_;(2)利用分离常数法,求分式的取值范围;(3)若分式拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:(整式部分对应等于,真分式部分对应等于)用含x的式子表示出mn;随着x的变化,有无最小值?如有,最小值为多少?5、(1)解方程:(2)先化简,再求值:的值,其中-参考答案-一、单选题1、C【分析】求出2021年与2020年城市绿化的增长率,相减即可【详解】解:2020年城市绿化的增长率为:;2021年城市绿化的增长率为:;2021年与2020年相比,鞍山城市绿化的增长率提高;故选:C【点睛】本题考查了列分式,解题关键是熟悉增长率的求法,正确列出分式并作差2、B【分析】将x3代入分式方程中进行求解即可【详解】解:把x3代入关于x的分式方程3得:,解得:m3,故选:B【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解3、C【分析】形如: 都为整式,且中含有字母,这样的代数式是分式,根据分式的定义逐一判断即可.【详解】解:代数式,中,分式有: 一共有3个,故选:C【点睛】本题考查的是分式的定义,掌握“分式的定义”是解本题的关键.4、A【分析】根据分式的定义解答即可【详解】解: 、 的分母中含字母,是分式, 、 、的分母中不含字母,不是分式,故选:A【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,注意不是字母,是常数,所以分母中含的代数式不是分式,是整式5、D【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【点睛】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键6、D【分析】根据分式的定义(如果表示两个整式,并且中含有字母,那么式子叫做分式)、分式的基本性质、单项式的次数的定义(一个单项式中,所有字母的指数的和叫做这个单项式的次数)、同底数幂除法的逆用逐项判断即可得【详解】解:A、如果表示两个整式,并且中含有字母,那么式子叫做分式,则此项错误;B、,则此项错误;C、单项式是2次单项式,则此项错误;D、若,则,则此项正确;故选:D【点睛】本题考查了分式与分式的基本性质、单项式的次数、同底数幂除法的逆用,掌握理解各定义和性质是解题关键7、C【分析】设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,得:,故选:C【点睛】本题考查了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系8、D【分析】将0.000005写成a×10n(1|a|10,n为整数)的形式即可【详解】解:0.000005=5×10-6故选D【点睛】本题主要考查了科学记数法,将原数写成a×10n(1|a|10,n为整数)的形式,确定a、n的值成为解答本题的关键9、D【分析】根据最简分式的定义:分母与分子没有公因式的分式叫做最简分式进行逐一判断即可【详解】解:A、,不是最简分式,不符合题意;B、,不是最简分式,不符合题意;C、,不是最简分式,不符合题意;D、,是最简分式,符合题意;故选D【点睛】本题主要考查了最简分式的定义,熟知定义是解题的关键10、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可【详解】解:A、的分子与分母含公因式(x+1),不属于最简分式,不符合题意; B、的分子与分母不含公因式,属于最简分式,符合题意;C、的分子与分母含公因式a,不属于最简分式,不符合题意;D、的分子与分母含公因式(ab),不属于最简分式,不符合题意;故选:B【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键二、填空题1、-3【分析】由已知可得,分式的分子为零,分母不为零,由此可得x2-9=0,x-30,解出x即可【详解】解:分式的值为零,x2-9=0,且x-30,解得x=-3故答案为:-3【点睛】本题考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零2、-b2【分析】根据分式的除法计算法则求解即可【详解】解:,故答案为:【点睛】本题主要考查了分式的除法,熟知相关计算法则是解题的关键3、则分式故答案为:2【点睛】此题主要考查了分式化简求值,正确对式子进行变形,化简求值是解决本题的关键在解题过程中要注意思考已知条件的作用2-1【分析】根据同分母分式的加法法则计算即可【详解】解:故答案为:-1【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减4、【分析】由题意直接依据从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟建立分式方程即可.【详解】解:由题意设G27次高铁列车的平均速度为x km/h,可得.故答案为:.【点睛】本题考查分式方程的实际应用,读懂题意并根据题干所给定的等量关系建立方程是解题的关键.5、【分析】先因式分解成,约分后得出最简分式,最后代入求值即可【详解】解:当时,原式故答案为:【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则三、解答题1、,【分析】先通分,化为同分母的分式,再进行加减运算,再把条件式化为整体代入求值即可.【详解】解: 所以:原式【点睛】本题考查的是分式的化简求值,熟练的通分,整体代入求值都是解本题的关键.2、(1)(2)【分析】(1)先算乘方,最后根据有理数加减运算法则即可求出值;先算乘方和绝对值,再用乘法分配律进行计算,最后算加减;(2)去括号、移项、合并同类项、系数化为1即可求解;去分母、去括号、移项、合并同类项、系数化为1即可求解;(1)解:原式;原式(2)解: ; 【点睛】本题考查了有理数的混合运算以及解一元一次方程,掌握有理数混合运算顺序和解一元一次方程的一般步骤是解题的关键3、【分析】先把除化乘,再因式分解同时约分,通分合并化简为最简分式即可【详解】解:,=,=,=,=,=【点睛】本题考查分数加减乘除混合运算,掌握分式混合运算法则是解题关键4、(1);(2);(3);当时,有最小值,最小值是27【分析】(1)按照阅读材料方法,把变形即可;(2)用分离常数法,把原式化为,由即可得答案;(3)用分离常数法,把原式化为,根据已知用的代数式表示、;根据已知用的代数式表示,配方即可得答案【详解】(1), 若x为整数,为负整数,则,解得:,故答案是:;(2),;(3),而分式拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:,而,当时,的最小值是27【点睛】本题考查分式的变形、运算,解题的关键是应用分离常数法,把所求分式变形5、(1)原方程无解;(2),【分析】(1)先去分母,然后再进行求解方程即可;(2)先把分子分母进行因式分解,然后再进行分式的除法运算,最后代值求解即可【详解】解:(1)去分母得:,去括号得:,移项、合并同类项得:,解得:,经检验:使分母为0,分式无意义,原方程无解;(2)=;把代入得:原式=【点睛】本题主要考查分式的化简求值及分式方程的解法,熟练掌握分式的化简求值及分式方程的解法是解题的关键