2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形章节练习练习题(名师精选).docx
-
资源ID:30708064
资源大小:795.47KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形章节练习练习题(名师精选).docx
北师大版八年级数学下册第六章平行四边形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正五边形ABCDE中,连接AD,则DAE的度数为( )A46°B56°C36°D26°2、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D43、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或174、若一个多边形的每一个内角均为120°,则下列说法错误的是( )A这个多边形的内角和为720°B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为360°5、正八边形的外角和为( )ABCD6、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为( )A4B6C8D107、七边形的内角和为( )A720°B900°C1080°D1440°8、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180°B外角和比内角和大180°C内角和比外角和大360°D内角和与外角和相等9、如图,在ABC中,ABC90°,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D4010、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的度数为_2、如图,平行四边形ABCD中,AC、BD交于点O,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD6,BCE的周长为14,则CD的长为_3、若一个多边形的每个外角都为36°,则这个多边形的内角和是_°4、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM1.5,ON1,则平行四边形ABCD的周长是_5、已知一个正五边形其一个内角的度数为 _三、解答题(5小题,每小题10分,共计50分)1、探究与发现:(1)如图(1),在ADC中,DP、CP分别平分ADC和ACD若,则 若,用含有的式子表示为 (2)如图(2),在四边形ABCD中,DP、CP分别平分ADC和BCD,试探究P与A+B的数量关系,并说明理由(3)如图(3),在六边形ABCDEF中,DP、CP分别平分EDC和BCD,请直接写出P与A+B+E+F的数量关系: 2、已知一个多边形的内角和是外角和的4倍,求这个多边形的边数3、(教材呈现)如图是华师版九年级上册数学教材第77页的部分内容(定理证明)(1)请根据教材内容,结合图,写出证明过程(定理应用)(2)如图,四边形中,、分别为、的中点,边、延长线交于点,则的度数是_(3)如图,矩形中,点在边上,且将线段绕点旋转一定的角度,得到线段,是线段的中点,直接写出旋转过程中线段长的最大值和最小值4、如图,ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF(1)求证:BDF30°(2)若EFD45°,AC+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角DMN,其中DNMN,连接FM,点O为FM的中点,当DMN绕点D旋转时,求证:EO的最大值等于BC5、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数-参考答案-一、单选题1、C【分析】在等腰三角形中,求出的度数即可解决问题【详解】在正五边形中,,是等腰三角形,故选:C【点睛】本题主要考查等腰三角形的性质以及正多边形内角,解答本题的关键是求出正五边形的内角,此题基础题,比较简单2、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90°,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH=DHC=60°,在ABCD中,BAD=C=60°,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30°,AHD=90°,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法3、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键4、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角和为,则选项A说法正确;多边形的外角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键5、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键6、C【分析】先证明AEEC,再求解AD+DC8,再利用三角形的周长公式进行计算即可.【详解】解:平行四边形ABCD,ADBC,ABCD,OAOC,EOAC,AEEC,AB+BC+CD+AD16,AD+DC8,DCE的周长是:CD+DE+CEAE+DE+CDAD+CD8,故选:C【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AEEC是解本题关键.7、B【分析】根据多边形内角和公式即可求解【详解】解:七边形的内角和为:(7-2)×180°=900°,故选:B【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键8、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D四边形的内角和与外角和相等,都等于360°,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°9、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90°,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90°,ADE=ABC=90°,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键10、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为360°二、填空题1、【分析】根据三角形外角的性质和四边形内角和等于360°可得A+B+C+D+E+F的度数【详解】解:如图,1=D+F,2=A+E,1+2+B+C=360°,A+B+C+D+E+F=360°故答案为:【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键2、8【分析】根据题意可知用MN垂直平分AC,则EA=EC,利用等线段代换得到BCE的周长=AB+BC,然后根据平行四边形的性质ADBC可确定答案【详解】四边形ABCD为平行四边形,ADBC,由题可知,MN是AC的垂直平分线,CE=AE,BCE的周长=BC+CE+BE=BC+AB=14,BC=AD=6,CD=AB=146=8故答案为:8【点睛】本题考查了垂直平分线的性质、平行四边形的性质,做题的关键是证明EA=EC,将CDE的周长转化为AB+BC3、1440【分析】根据该多边形的每个外角都为36°可确定该多边形为正多边形,再根据多边形外角和定理可求出此正多边形的边数,然后根据多边形的内角和定理求出多边形的内角和【详解】解:此多边形每一个外角都为36°,该多边形为正多边形这个正多边形的边数为360°÷36°10这个多边形的内角和为(102)×180°1440°故答案为:1440【点睛】本题考查多边形的外角和定理,多边形的内角和定理,熟练掌握这些知识点是解题关键4、10【分析】根据平行四边形的性质可得BODO,ADBC,ABCD,再由条件M、N分别为AB、BC的中点可得MO是ABD的中位线,NO是BCD的中位线,再根据三角形中位线定理可得AD、DC的长【详解】解:四边形ABCD是平行四边形,BODO,ADBC,ABCD,M、N分别为AB、BC的中点,MOAD,NOCD,OM1.5,ON1,AD3,CD2,平行四边形ABCD的周长是:332210,故答案为:10【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分5、#【分析】先由正五边形的外角和为及每一个外角都相等求解一个外角,再根据这个外角与相邻的内角互补,从而可得答案.【详解】解:由正五边形的每一个外角都相等, 正五边形的每一个外角 正五边形的每一个内角为: 故答案为:【点睛】本题考查的是正多边形的内角,外角的性质,掌握正多边形的外角和为,每一个外角都相等是解本题的关键.三、解答题1、(1)125°P90°;(2)P(AB)(3)P(ABEF)180°【分析】(1)根据角平分线的定义可得:CDPADC,DCPACD,根据三角形内角和为180°可得P与A的数量关系;同的方法即可求解;(2)根据角平分线的定义可得:CDPADC,DCPBCD,根据四边形内角和为360°,可得BCDADC360°(AB),再根据三角形内角和为180°,可得P与AB的数量关系;(3)根据角平分线的定义可得:CDPADC,DCPBCD,根据六边形内角和为720°,可得BCDEDC720°(ABEF),再根据三角形内角和为180°,可得P与AB的数量关系【详解】解:(1)DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180°ADCACD180°APPDCPCD180°P180°(PDCPCD)180° (ADCACD)P180°(180°A)90°A=90°×70°=125°故答案为:125°;DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180°ADCACD180°APPDCPCD180°P180°(PDCPCD)180° (ADCACD)P180°(180°A)90°A=90°故答案为:P90°;(2)P(AB)理由如下:DP、CP分别平分ADC和BCD,CDPADC,DCPBCDABBCDADC360°BCDADC360°(AB)PPDCPCD180°P180°(PDCPCD)180°(ADCBCD)P180°360°(AB)(AB)(3)DP、CP分别平分EDC和BCDPDCEDC,PCDBCDABEFBCDEDC720°BCDEDC720°(ABEF)PPDCPCD180°P180°(PDCPCD)180°(EDCBCD)P180° 720°(ABEF)P(ABEF)180°故答案为:P(ABEF)180°【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键2、这个多边形的边数是10【分析】多边形的外角和是360°,内角和是它的外角和的4倍,则内角和为4×360=1440度n边形的内角和可以表示成(n-2)180°,设这个多边形的边数是n,即可得到方程,从而求出边数【详解】解:设这个多边形的边数为n,由题意得:(n2)×180°4×360°,解得n10,故这个多边形的边数是10【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)180°,外角和为360°3、(1)见解析;(2);(3)长的最大值为,最小值为【分析】(1)延长至,使,连接,根据题意证明,然后证明四边形为平行四边形,即可得出,;(2)首先根据三角形外角的性质得到,然后由三角形中位线的性质得到,可得到,由即可求出的度数(3)延长至,使,连接,可得,可得当FH最小或最大时,MB最小或最大,由题意可得当点在线段上时,最小,当点在线段的延长线上时,最大,根据勾股定理求出AH的长度,然后即可求出线段长的最大值和最小值【详解】(1)证明:延长至,使,连接,在和中,四边形为平行四边形,;(2)、分别为、的中点,是DAB的中位线,是BCD的中位线,又,;(3)解:延长至,使,连接,由勾股定理得,当点在线段上时,最小,最小值为,当点在线段的延长线上时,最大,最大值为,长的最大值为,最小值为【点睛】此题考查了三角形中位线的性质,勾股定理的运用,线段最值问题,平行四边形的判定和性质,解题的关键是熟练掌握三角形中位线的性质,平行四边形的判定和性质,勾股定理4、(1)见解析;(2)2;(3)见解析【分析】(1)由ABC是等边三角形,可得ABC=60°,由D、F关于直线BE对称,得到BF=BD,则BFD=BDF,由三角形外角的性质得到BFD+BDF=ABD,则BDF=BFD=30°;(2)设,由D、F关于直线BE对称,得到BGD=BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性质和勾股定理得,证明EABDAC得到,再由,得到,由此求解即可;(3)连接OG,先求出,证明OG是三角形DMF的中位线,得到,再根据两点之间线段最短可知,则OE的最大值等于BC【详解】解:(1)ABC是等边三角形,ABC=60°,D、F关于直线BE对称,BF=BD,BFD=BDF,BFD+BDF=ABD,BDF=BFD=30°;(2)设,D、F关于直线BE对称,BGD=BGF=90°,EF=ED,EDG=EFG=45°,EG=DG,BDG=30°,由旋转的性质可得AE=AD,EAD=BAC=60°,EAB+BAD=CAD+BAD,即EAB=DAC,又AB=AC,EABDAC(SAS),;(3)如图所示,连接OG,在等腰直角三角形DMN中,D、F关于直线BE对称,G为DF的中点,又O为FM的中点,OG是三角形DMF的中位线,由(2)可得,根据两点之间线段最短可知,OE的最大值等于BC【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质5、这个多边形的边数是6【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度n边形的内角和可以表示成(n-2)180°,设这个多边形的边数是n,即可得到方程,从而求出边数【详解】解:设这个多边形的边数为n,由题意得:(n2)×180°2×360°,解得n6,这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)180°,外角和为360°