2021-2022学年度北师大版八年级数学下册第五章分式与分式方程定向攻克试题(名师精选).docx
-
资源ID:30709467
资源大小:212.54KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度北师大版八年级数学下册第五章分式与分式方程定向攻克试题(名师精选).docx
北师大版八年级数学下册第五章分式与分式方程定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果把分式中的和都扩大为原来的2倍,那么分式的值( )A扩大为原来的4倍B扩大为原来的2倍C不变D缩小为原来的2倍2、根据分式的基本性质,分式可变形为()ABCD3、x满足什么条件时分式有意义( )ABCD4、下列各分式中,当x1时,分式有意义的是()ABCD5、式子中x的取值范围是( )Ax2Bx2Cx2Dx2且x26、若分式的值为0,则x的值为( )AB2CD17、北斗三号系统产生的时间基准可达到300万年误差1秒,创造了卫星授时的“中国精度”北斗卫星授时精度为,这个精度以s为单位表示为( )ABCD8、关于x的方程有增根,则m的值是( )A2B1C0D-19、化简÷的结果是()AmBmCm+1Dm110、若把分式的x,y同时扩大2倍,则分式的值为()A扩大为原来的2倍B缩小为原来的C不变D缩小为原来的第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n_2、当_时,分式无意义3、计算:_4、当_时,分式有意义;当_时,分式值为05、若分式有意义,则的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?2、我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等小学里,把分子比分母小的数叫做真分数,类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式对于任何一个假分式都可以化成整式与真分式的和的形式如:;(1)在、这些分式中,属于真分式的是 (填序号)(2)将假分式化成整式与真分式和的形式;(3)若假分式的值是整数,则整数x的值为 3、某商店想购进A、B两种商品,已知每件B种商品的进价比每件A种商品的进价多5元,且用300元购进A种商品的数量是用100元购进B种商品数量的4倍求每件A种商品和每件B种商品的进价分别是多少元?4、解方程:(1);(2)5、先化简,再求值:(x+)÷(x+1),其中x-参考答案-一、单选题1、B【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:分别用2x和2y去代换原分式中的x和y,得,可见新分式扩大为原来的2倍故选B【点睛】本题主要考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论2、C【分析】分式的恒等变形是依据分式的基本性质,分式的分子分母同时乘以或除以同一个非0的数或式子,分式的值不变【详解】解:依题意得:=故选:C【点睛】本题考查的是分式的性质,理解将负号提出不影响分式的值是解题关键3、D【分析】直接利用分式有意义的条件解答即可【详解】解:要使分式有意义,解得:,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件分母不等于零,是解题的关键4、A【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可【详解】解:A、当x1时,分母2x+110,所以分式有意义;故本选项符合题意;B、当x1时,分母x+10,所以分式无意义;故本选项不符合题意;C、当x1时,分母x210,所以分式无意义;故本选项不符合题意;D、当x1时,分母x2+x0,所以分式无意义;故本选项不符合题意;故选A【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键5、D【分析】根据二次根式及分式有意义的条件可直接进行求解【详解】解:由题意得:且,解得:且;故选D【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键6、A【分析】直接利用分式的值为零,则分子为零且分母不为0进而得出答案【详解】解:分式的值为0,x+2=0,x-10解得:x=-2故选:A【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键7、C【分析】将10乘以对应的进率即可得到答案【详解】解:10ns=s, 故选:C【点睛】此题考查同底数幂的乘法法则:底数不变,指数相加,正确掌握同底数幂的计算法则及单位的换算进率是解题的关键8、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x1),得:m1x0,方程有增根,最简公分母x1=0,即增根是x=1,把x=1代入整式方程,得m=2故选A【点睛】考查了分式方程的增根,解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值9、C【分析】把除法转化为乘法,然后约分即可求出答案【详解】解:原式m+1,故选:C【点睛】本题考查了分式的除法运算,两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘,再按乘法法则计算即可10、D【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:根据题意得:,即把分式的x,y同时扩大2倍,则分式的值缩小为原来的,故选:D【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键概率=所求情况数与总情况数之比2、【分析】分式无意义的条件是分母等于0,根据分母等于0,列出方程,求出的值即可【详解】分式无意义, , 故答案为:【点睛】本题主要是考查了分式无意义的条件,掌握“分式的分母为0,分式无意义”是解决本题的关键3、则分式故答案为:2【点睛】此题主要考查了分式化简求值,正确对式子进行变形,化简求值是解决本题的关键在解题过程中要注意思考已知条件的作用2-1【分析】根据同分母分式的加法法则计算即可【详解】解:故答案为:-1【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减4、2 1 【分析】根据分式的定义,分母不为零则分式有意义,分式的分子为零而分母不为零,则分式的值为零【详解】当时,即时,分式有意义;由题意,即但当x=1时,分母x-1=1-1=0;故答案为:;1【点睛】本题考查了分式的意义及分式值为零的条件,特别要注意的是:分式的分母不能为零5、【分析】根据分式有意义的条件求解即可分式有意义的条件:分式的分母不等于零【详解】解:分式有意义,解得:故答案为:【点睛】此题考查了分式有意义的条件,解题的关键是熟练掌握分式有意义的条件分式有意义的条件:分式的分母不等于零三、解答题1、(1)苹果每箱60元,粑粑柑每箱90元(2)最多可购买11箱粑粑柑【分析】(1)设苹果每箱x元,则粑粑柑每箱(x+30)元,然后根据某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍,列出方程求解即可;(2)设可以购买m箱粑粑柑,则购买(30m)箱苹果,然后根据某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,列出不等式求解即可(1)解:设苹果每箱x元,则粑粑柑每箱(x+30)元,依题意得:,解得:x60,经检验,x60是原方程的解,且符合题意,x+3060+3090答:苹果每箱60元,粑粑柑每箱90元(2)解:设可以购买m箱粑粑柑,则购买(30m)箱苹果,依题意得:90×0.9m+60×(1+5%)(30m)2100,解得:m11,又m为正整数,m的最大值为11答:最多可购买11箱粑粑柑【点睛】本题主要考查了分式方程和一元一次不等式的实际应用,解题的关键在于能够正确理解题意列出方程和不等式求解2、(1);(2);(3)1或0或4或3【分析】(1)直接根据真分式的定义判断即可;(2)仿照例题进行转化即可;(3)根据题意只需是整数,进而求解2x1±1或2x1±7即可【详解】解:(1)根据真分式的定义,属于真分式的是故答案为:;(2);(3)由(2)得:,假分式的值是整数,是整数,2x1±1或2x1±7x1或0或4或3故答案为:1或0或4或3【点睛】本题考查分式的性质、分式的加减运算,理解题中定义和转化方法是解答的关键3、每件A商品的进价为15元,每件B商品的进价为20元【分析】设每件A商品的进价为x元,则每件B商品的进价为(x+5)元,根据“用300元购进A种商品的数量是用100元购进B种商品数量的4倍”列出方程,解方程即可【详解】解:设每件A商品的进价为x元,则每件B商品的进价为(x+5)元,由题意得:,解得:x=15,经检验,x=15是原分式方程的解,且符合题意,则x+5=20,答:每件A商品的进价为15元,每件B商品的进价为20元【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,找出合适的数量关系,列出方程4、(1)(2)无解【分析】(1)先给方程两边同时乘以x(x+3)去分母化为整式方程,然后求出整式方程的解并检验即可解答;(2)先给方程两边同时乘以去分母化为整式方程,然后求出整式方程的解并检验即可解答(1)解:.检验:当时,.所以,原分式方程的解为(2)解:2x-2+3x+3=6.检验:当时,.不是原分式方程的解.所以,原分式方程无解【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解答本题的关键,最后的检验是解答本题的易错点5、;【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【详解】(x+)÷(x+1),当x时,原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法