欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年最新北师大版九年级数学下册第三章-圆定向攻克练习题(含详解).docx

    • 资源ID:30711743       资源大小:802.03KB        全文页数:35页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年最新北师大版九年级数学下册第三章-圆定向攻克练习题(含详解).docx

    北师大版九年级数学下册第三章 圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为3,若PO=2,则点P与O的位置关系是( )A点P在O内B点P在O上C点P在O外D无法判断2、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD3、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19°B38°C52°D76°4、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2005、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD6、如图,四边形ABCD内接于O,连接BD,若,BDC50°,则ADC的度数是()A125°B130°C135°D140°7、如图,等边ABC内接于O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切O于点C,AFCF交O于点G下列结论:ADC60°;DB2DEDA;若AD2,则四边形ABDC的面积为;若CF2,则图中阴影部分的面积为正确的个数为()A1个B2个C3个D4个8、如图,点A,B,C在O上,若ACB40°,则AOB的度数为()A40°B45°C50°D80°9、如图,FA、FB分别与O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若F60°,FDE的周长为12,则O的半径长为()AB2C2D310、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA,PB分别切O于点A,B,Q是优弧上一点,若P=40°,则Q的度数是_2、如图,已知圆锥的母线AB长为40 cm,底面半径OB长为10 cm,若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B重合,则这根绳子的最短长度是_3、圆形角是270°的扇形的半径为4cm,则这个扇形的面积是_4、如图,网格中的小正方形边长都是1,则以为圆心,为半径的和弦所围成的弓形面积等于_5、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是_三、解答题(5小题,每小题10分,共计50分)1、已知矩形,将矩形绕点A顺时针旋转,得到矩形(1)当点E在上时,求证:;(2)当时,求a值;(3)将矩形绕点A顺时针旋转的过程中,求绕过的面积2、如图,在ABC中,C90°,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长3、如图,内接于,弦AE与弦BC交于点D,连接BO,(1)求证:;(2)若,求的度数;(3)在(2)的条件下,过点O作于点H,延长HO交AB于点P,若,求半径的长4、如图,AB是O的直径,连接DE、DB,延长AE交BD的延长线于点M,过点D作O的切线交AB的延长线于点C(1)求证:DEDM;(2)若OACD2,求阴影部分的面积5、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程已知:如图,求作:直线BD,使得作法:如图,分别作线段AC,BC的垂直平分线,两直线交于点O;以点O为圆心,OA长为半径作圆;以点A为圆心,BC长为半径作孤,交于点D;作直线BD所以直线BD就是所求作的直线根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接AD,点A,B,C,D在上,_(_)(填推理的依据)-参考答案-一、单选题1、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外,根据以上内容判断即可【详解】O的半径为3,若PO2,23,点P与O的位置关系是点P在O内,故选:A【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外2、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键3、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.4、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路5、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的性质,可得OAB=30°,然后根据锐角三角函数,即可求解【详解】解:如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30°,在中, ,AB=3,即这个正三角形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键6、B【分析】如图所示,连接AC,由圆周角定理BAC=BDC=50°,再由等弧所对的圆周角相等得到ABC=BAC=50°,再根据圆内接四边形对角互补求解即可【详解】解:如图所示,连接AC,BAC=BDC=50°,ABC=BAC=50°,四边形ABCD是圆内接四边形,ADC=180°-ABC=130°,故选B【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键7、C【分析】如图1,ABC是等边三角形,则ABC60°,根据同弧所对的圆周角相等ADCABC60°,所以判断正确;如图1,可证明DBEDAC,则,所以DBDCDEDA,而DB与DC不一定相等,所以判断错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,先证明ABKACD,可证明S四边形ABDCSADK,可以求得SADK,所以判断正确;如图3,连接OA、OG、OC、GC,由CF切O于点C得CFOC,而AFCF,所以AFOC,由圆周角定理可得AOC120°,则OACOCA30°,于是CAGOCA30°,则COG2CAG60°,可证明AOG和COG都是等边三角形,则四边形OABC是菱形,因此OACG,推导出S阴影S扇形COG,在RtCFG中根据勾股定理求出CG的长为4,则O的半径为4,可求得S阴影S扇形COG,所以判断正确,所以这3个结论正确【详解】解:如图1,ABC是等边三角形,ABC60°,等边ABC内接于O,ADCABC60°,故正确;BDEACB60°,ADCABC60°,BDEADC,又DBEDAC,DBEDAC,,DBDCDEDA,D是上任一点,DB与DC不一定相等,DBDC与DB2也不一定相等,DB2与DEDA也不一定相等,故错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,ABK+ABD180°,ACD+ABD180°,ABKACD,ABAC,ABKACD(SAS),AKAD,SABKSACD,DHKHDK,AHD90°,ADH60°,DAH30°,AD2,DHAD1, DK2DH2,SADK,S四边形ABDCSABD+SACDSABD+SABKSADK,故正确;如图3,连接OA、OG、OC、GC,则OAOGOC,CF切O于点C,CFOC,AFCF,AFOC,AOC2ABC120°,OACOCA×(180°120°)30°,CAGOCA30°,COG2CAG60°,AOG60°,AOG和COG都是等边三角形,OAOCAGCGOG,四边形OABC是菱形,OACG,SCAGSCOG,S阴影S扇形COG,OCF90°,OCG60°,FCG30°,F90°,FGCG,FG2+CF2CG2,CF,(CG)2+()2CG2,CG4,OCCG4,S阴影S扇形COG,故正确,这3个结论正确,故选C【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解8、D【分析】由ACB=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOB的度数【详解】解:ACB=40°,AOB=2ACB=80°故选:D【点睛】本题考查了圆周角定理此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用9、C【分析】根据切线长定理可得,、,再根据F60°,可知为等边三角形,再FDE的周长为12,可得,求得,再作,即可求解【详解】解:FA、FB分别与O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,则:、,F60°,为等边三角形,FDE的周长为12,即,即,作,如下图:则,设,则,由勾股定理可得:,解得,故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解10、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键二、填空题1、70°度【分析】连接OA、OB,根据切线性质可得OAP=OBP=90°,再根据四边形的内角和为360°求得AOB,然后利用圆周角定理求解即可【详解】解:连接OA、OB,PA,PB分别切O于点A,B,OAP=OBP=90°,又P=40°,AOB=360°90°90°40°=140°,Q=AOB=70°,故答案为:70°【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键2、cm【分析】根据底面圆的周长等于扇形的弧长求解扇形的圆心角 再利用勾股定理求解即可.【详解】解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n°, 圆锥底面圆周长为 则n=90, 即这根绳子的最短长度是cm, 故答案为:【点睛】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.3、12【分析】根据扇形的面积公式计算即可【详解】=12,故答案为:12【点睛】本题考查了扇形的面积,熟记扇形面积公式是解题的关键4、【分析】根据勾股定理求出半径AO的长度,然后根据弓形面积扇形OAB的面积-三角形OAB的面积,求解即可【详解】解:由勾股定理得,由网格的性质可得,是等腰直角三角形,和弦所围成的弓形面积故答案为:【点睛】此题考查了网格的特点和性质,勾股定理,扇形面积公式等知识,解题的关键是正确分析出弓形面积扇形面积-三角形OAB的面积5、相切【分析】本题应将原点到直线x=3的距离与半径对比即可判断【详解】解:原点到直线x=3的距离为3,半径为3,则有3=3,这个圆与直线x=3相切故答案为:相切【点睛】本题考查了直线与圆的位置关系、坐标与图形性质直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径三、解答题1、(1)见解析;(2)旋转角为 60°或者 300°;(3)9【分析】(1)由旋转的性质及等腰三角形性质得AEBABE,由AEFBAD可得EAFABD,从而有AEBEAF,故由平行线的判定即可得到结论;(2)分点G在AD的右侧和AD的左侧两种情况;均可证明GAD是等边三角形,从而问题解决;(3)由S阴影S扇形ACFS扇形ADG,分别计算出两个扇形的面积即可求得阴影部分面积【详解】(1)连接AF,由旋转可得,AEAB,EF=BC,AEF=ABC=90AEBABE,又四边形ABCD是矩形ABC=BAD=90,BC=ADEF=AD,AEF=BAD=90在AEF和BAD中 AEFBAD(SAS),EAFABD,AEBEAF,AFBD (2)如图,当GBGC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GCGB,GHBC,四边形ABHM是矩形,AMBHADAG,GM垂直平分AD,GDGADA,ADG是等边三角形,DAG60°,旋转角60°; 当点G在AD左侧时,同理可得ADG是等边三角形,DAG60°,旋转角360°60°300° 旋转角为 60°或者 300°(3)如图3,S扇形ACF25,S扇形ADG16,S阴影S扇形ACFS扇形ADG25169即阴影部分的面积为【点睛】本题考查了矩形的性质,旋转的性质,等边三角形的判定与性质,扇形面积,线段垂直平分线的判定等知识,涉及的知识点较多,灵活运用这些知识是解题的关键,(2)小问注意分类讨论2、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90°,ACD+DCB=90°,即:3DCB=90°,DCB=30°,OC=OD,DCB=ODC=30°,COD=180°-2×30°=120°,DCB=B=30°,在RtABC中,BAC=60°,AO平分BAC,CAO=DAO=30°,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键3、(1)见解析;(2)30°;(3)【分析】(1)如图所示,连接OA,则,由OA=OB,得到OAB=OBA,即可推出,即OBA+ACB=90°,再由OBA=CAE,则ACB+CAE=90°,由此即可证明;(2)如图所示,连接CE,则ABC=AEC,由,可得AEC=30°,则ABC=30°;(3)如图所示,过点O作OFAB于F,则BF=AF,设FP=x,可得BP=BF+PF=6+2x,OP=2FP=2x,推出PH=OP+OH=1+2x,则BP=2+4x,从而得到2+4x=6+2x,由此求解即可【详解】解:(1)如图所示,连接OA,OA=OB,OAB=OBA,OAB+OBA+AOB=180°,即OBA+ACB=90°,又OBA=CAE,ACB+CAE=90°,ADC=90°,AEBC;(2)如图所示,连接CE,ABC=AEC,AEBC,AEC=30°,ABC=30°;(3)如图所示,过点O作OFAB于F,BF=AF,设FP=x,BF=AF=AP+PF=6+x,BP=BF+PF=6+2xABC=30°,PHBC, BPH=60°,BP=2PH,又OFAB,OFP=90°,POF=30°,OP=2FP=2x,PH=OP+OH=1+2x,BP=2+4x,2+4x=6+2x,解得x=2,PF=2,BF=8,PO=4,圆O的半径长为【点睛】本题主要考查了圆周角定理,含30度角的直角三角形的性质,等腰三角形的性质,特殊角三角形函数值求度数,勾股定理,垂径定理等等,解题的关键在于能够正确作出辅助线求解4、(1)见详解;(2)【分析】(1)连接AD,根据弦、弧之间的关系证明DB=DE,证明AMDABD,得到DM=BD,得到答案(2)连接OD,根据已知和切线的性质证明OCD为等腰直角三角形,得到DOC=45°,根据S阴影=SOCD-S扇OBD计算即可;【详解】解:(1)如图,连接AD,AB是O直径,ADB=ADM=90°,又,ED=BD,MAD=BAD,在AMD和ABD中,AMDABD,DM=BD,DE=DM;(2)如上图,连接OD,CD是O切线,ODCD,OA=CD=,OA=OD,OD=CD=,OCD为等腰直角三角形,DOC=C=45°,S阴影=SOCDS扇OBD=;【点睛】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法5、(1)作图见解析;(2) 在同圆中,等弧所对的圆周角相等【分析】(1)根据题干的作图步骤依次作图即可;(2)由作图可得,证明,利用圆周角定理可得,从而可得答案.【详解】解:(1)如图,直线BD就是所求作的直线 (2)证明:连接AD,点A,B,C,D在上,(在同圆中,等弧所对的圆周角相等)故答案为: 在同圆中,等弧所对的圆周角相等【点睛】本题考查的是作线段的垂直平分线,三角形的外接圆,平行线的作图,圆周角定理的应用,掌握“圆周角定理”是理解作图的关键.

    注意事项

    本文(2021-2022学年最新北师大版九年级数学下册第三章-圆定向攻克练习题(含详解).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开