2021-2022学年度沪科版九年级数学下册第24章圆定向测评试题(含解析).docx
-
资源ID:30712672
资源大小:1.70MB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度沪科版九年级数学下册第24章圆定向测评试题(含解析).docx
沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )ABCD2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD3、下列四个图案中,是中心对称图形的是()ABCD4、如图,是的直径,弦,垂足为,若,则( )A5B8C9D105、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个6、计算半径为1,圆心角为的扇形面积为( )ABCD7、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD8、如图,将OAB绕点O逆时针旋转80°得到OCD,若A的度数为110°,D的度数为40°,则AOD的度数是( )A50°B60°C40°D30°9、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个10、如图是一个含有3个正方形的相框,其中BCDDEF90°,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是_2、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是_ 3、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58°,则ACB的大小是_4、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角_度5、如图,AB为O的弦,AOB=90°,AB=a,则OA=_,O点到AB的距离=_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQPOPQ且PO2,我们称点P是线段OQ的“潜力点”已知点O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_;(2)若点P在直线yx上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y2xb与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围2、如图,在RtABC中,C90°,将ABC绕着点B逆时针旋转得到FBE,点C,A的对应点分别为E,F点E落在BA上,连接AF(1)若BAC40°,求BAF的度数;(2)若AC8,BC6,求AF的长3、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90°后得到的A2B2C24、如图,四边形是的内接四边形,(1)求的度数(2)求的度数5、如图,已知AB是O的直径,O过BC的中点D,且(1)求证:DE是O的切线;(2)若,求的半径-参考答案-一、单选题1、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心2、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键3、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键4、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、B【分析】根据所学知识对五个命题进行判断即可【详解】1、=12-4×1=-3<0,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键6、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键7、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90°,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=BAC=90°,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30°,根据圆周角定理得出AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30°根据圆周角定理得出AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90°,AD=AE=,DAB+BAE=90°,BAE+EAC=90°,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90°,CP为A的切线,AECP,DPE=PEA=DAE=90°,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30°,AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30°,AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60°+60°=120°,L故点P运动的路径长为正确;正确的是故选B【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键8、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80°得到OCD, A的度数为110°,D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.9、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键10、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB2,CD3,EF5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.二、填空题1、35°【分析】根据旋转的性质可得AODBOC30°,AODO,再求出BOD,ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:COD是AOB绕点O顺时针旋转30°后得到的图形,AODBOC30°,AODO,AOC100°,BOD100°30°×240°,ADOA(180°AOD)(180°30°)75°,由三角形的外角性质得,BADOBOD75°40°35°故答案为:35°【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键2、6【分析】如图,连接OA、OB、OC、OD、OE、OF,证明AOB、BOC、DOC、EOD、EOF、AOF都是等边三角形,再求出圆的半径即可【详解】解:如图,连接OA、OB、OC、OD、OE、OF正六边形ABCDEF,ABBCCDDEEFFA,AOBBOCCODDOEEOFFOA60°,AOB、BOC、DOC、EOD、EOF、AOF都是等边三角形,的周长为,的半径为,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键3、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.4、60【分析】根据弧长公式求解即可【详解】解:,解得,故答案为:60【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.5、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90°,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题三、解答题1、(1);(2);(3)或【分析】(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.【详解】解:(1) O(0,0),Q(1,0), P1(0,-1),P2(,),P3(-1,1) 不满足OQPOPQ且PO2,所以不是线段OQ的“潜力点”,同理: 所以不满足OQPOPQ且PO2,所以不是线段OQ的“潜力点”,同理: 所以满足:OQPOPQ且PO2,所以是线段OQ的“潜力点”,故答案为:P3(2)点P为线段OQ的“潜力点”,OQPOPQ且PO2,OQPO,点P在以O为圆心,1为半径的圆外POPQ,点P在线段OQ垂直平分线的左侧,而的垂直平分线为: PO2,点P在以O为圆心,2为半径的圆上或圆内又点P在直线yx上,点P在如图所示的线段AB上(不包含点B) 过作轴,过作轴,垂足分别为 由题意可知BOC和 AOD是等腰三角形, -xp-(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧当时,过时, 即函数解析式为: 此时 则 当与半径为2的圆相切于时,则 由 而 当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,同理:当过 则 直线为 在直线上,此时 当过时, 则 所以此时: 综上:的范围为:1b或b-1【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.2、(1)65°(2)【分析】(1)根据三角形的内角和定理得到ABC=50°,根据旋转的性质得到EBF=ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论【小题1】解:在RtABC中,C=90°,BAC=40°,ABC=50°,将ABC绕着点B逆时针旋转得到FBE,EBF=ABC=50°,AB=BF,BAF=BFA=(180°-50°)=65°;【小题2】C=90°,AC=8,BC=6,AB=10,将ABC绕着点B逆时针旋转得到FBE,BE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键3、(1)(4,1);(2)见解析;(3)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点4、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可【详解】解:(1),在中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键5、(1)证明见解析;(2)【分析】(1)连接,只要证明即可此题可运用三角形的中位线定理证,因为,所以(2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长【详解】(1)证明:连接因为是的中点,是的中点,是圆的半径,是的切线(2)如图,且,且, ,的半径长为【点睛】本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题