2022中考特训浙教版初中数学七年级下册第五章分式综合测试试卷(含答案解析).docx
-
资源ID:30714119
资源大小:243.42KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022中考特训浙教版初中数学七年级下册第五章分式综合测试试卷(含答案解析).docx
初中数学七年级下册第五章分式综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、计算(2021)0的结果是( )A2021B2021C1D02、已知1纳米,那么用科学记数法表示为( )ABCD3、化简的结果是()ABCD1x4、新冠病毒由蛋白质外壳和单链核酸组成,直径大约在60140纳米(1纳米0.0000001厘米)某冠状病毒的直径约0.0000135厘米数据“0.0000135”用科学记数法表示为()A1.35×106B13.5×106C1.35×105D0.135×1045、下列说法正确的是( )A没有意义B任何数的0次幂都等于1CD若,则6、计算的正确结果是( )A2021BCD7、如果分式的值为0,那么x的值为( )A0B1CD8、已知, , ,则m, n, p的大小关系是( )Am < p < nBn < m < pCp < n < mDn < p < m 9、若,则的值为( )A0B1C2D310、下列各式计算正确的是()ABC D二、填空题(5小题,每小题4分,共计20分)1、有一批的新冠肺炎疫苗需要在规定日期内完成生产,如果交给中国独做,恰好如期完成,如果美国独做,就要超过规定4天,现在由中国和美国合作2天,剩下的由美国独做,也刚好在规定日期内完成,问中国独自完成这一批新冠肺炎疫苗需要_天2、化简:_3、计算_4、若关于x的方程无解,则a的值为 _5、若分式有意义,则x的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、解方程:2、将下列代数式按尽可能多的方法分类(至少写三种):3、某校为了准备“迎新活动”,用900元购买了甲、乙两种礼品共240个,其中购买甲种礼品比乙种礼品少用了180元(1)购买甲种礼品一共用去_元;(请直接写出答案)(2)如果甲种礼品的单价是乙种礼品单价的2倍,那么乙种礼品的单价是多少元?4、计算(1);(2);(3)5、计算:-参考答案-一、单选题1、C【分析】根据任何不为0的数的零次幂都等于1,可得答案【详解】解:a01 (a0),(2021)01,故选:C【点睛】本题考查零指数幂,掌握任何不为0的数的零次幂都等于1是得出正确答案的前提2、C【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解: ,故选C【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义3、A【分析】先把分子分母分别分解因式,约去分式的分子与分母的公因式即可【详解】解:,故选:A【点睛】本题考查的是分式的约分,约分约去的是分子分母的公因式,把分子分母分别分解因式是解本题的关键.4、C【分析】用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键5、D【分析】根据除0之外的任何数的零次幂都等于1即可判定A、B、D,根据幂的混合运算法则即可判断C【详解】解:A、,有意义,故此选项不符合题意;B、除0外的任何数的0次幂都等于1,故此选项不符合题意;C、,故此选项不符合题意;D、若,则,故此选项符合题意;故选D【点睛】本题主要考查了幂的运算,零指数幂,解题的关键在于能够熟练掌握相关计算法则6、D【分析】根据负整数指数幂的性质计算即可;【详解】;故选D【点睛】本题主要考查了负整数指数幂,准确计算是解题的关键7、B【分析】分式的值为0,可知分母不为0,分子为0,由此可得到最终结果【详解】分式的值为0,解得,又,故选:B【点睛】本题考查了分母的值为0的条件,属于基础题,解题的关键是明白分母不为0,分子为08、D【分析】根据零指数幂、负指数幂以及乘方的运算求得,比较即可【详解】解:,故选D【点睛】此题考查了零指数幂、负指数幂以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出的值9、A【分析】由题意可得:,通过整理得:,则可求得【详解】解:,故选:【点睛】本题主要考查了零指数幂法则,解答的关键是明确非0实数的0次方等于110、A【分析】根据各自的运算公式计算判断即可【详解】,A正确;,B不正确;,C不正确;,D不正确;故选A【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键二、填空题1、4【分析】设中国需要x天,则美国需要(x+4)天,结合等量关系“中国2天的工作量+美国x天的工作量=工作总量”列出方程即可;【详解】解:设中国需要x天,由题意可得:, 解得x=4经检验:x=4是方程的解,且符合题意,故答案为:4【点睛】本题考查分式方程的应用解决本题的关键是得到工作量11的等量关系;易错点是得到甲乙两队各自的工作时间2、【分析】先通分,化为同分母分式,再计算同分母分式的加减运算,从而可得答案.【详解】解:原式,故答案为:【点睛】本题考查的是异分母的分式的加减运算,掌握“先通分,化为同分母分式”是解题的关键,易错点是运算过程中的符号问题.3、【分析】利用负整数指数幂,零指数幂的法则,即可求解【详解】解:故答案为: 【点睛】本题主要考查了负整数指数幂,零指数幂的法则,熟练掌握负整数指数幂,零指数幂的法则是解题的关键4、-1或-2或【分析】化简得,整理有,分类讨论,若=0且时,则a=-1,若0,则,由x的方程无解可知x=1或x=2,则或,解得a=-2或a=【详解】将化简得若=0且时则a=-1若0,则有关于x的方程无解即x-1=0、x-2=0 故x=1或2将x=1或2代入有或解得a=-2或a=故答案为:-1或-2或【点睛】本题考查了分式方程无解的问题,依据分式方程的无根确定字母参数的情况有1、分式方程化成的整式方程,该整式方程本事没有根,若化为的是一元一次方程,则一次项系数为0即可,若化为的一元二次方程,则判别式小于零即可;分式方程的增根有两个特点:第一:它必须是由分式方程转化成的整式方程的根;第二:它能使原分式方程的最简公分母等于0;依据分式方程的增根确定字母参数的值的一般步骤先将分式方程转化为整式方程;由题意求出增根;将增根代入所化得的整式方程,解之就可得到字母参数的值5、【分析】根据分母不等于零分式有意义,可得答案【详解】解:分式有意义, 解得,故答案为:【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键三、解答题1、【分析】按照分式方程的求解步骤求解即可,最后验证方程的根【详解】解:去分母,得去括号,得移项,得解得经检验,是原方程的根,所以,原方程的根是【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法2、见详解【分析】根据整式和分式分类,单项式,多项式,分式分类,单项式二项式,四项式,分式分类,即可【详解】解:整式:分式:;单项式:多项式:分式:;单项式:二项式:四项式:分式:【点睛】本题主要考查整式,单项式,多项式的概念,熟练掌握整式,单项式、多项式的定义是解题的关键3、(1)360;(2)3元【分析】(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,然后根据一共花了900元,列出方程求解即可;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,然后根据用900元购买了甲、乙两种礼品共240个,列出方程求解即可【详解】解:(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,由题意得:x+180+x=900,解得:x=360,购买甲种礼品一共用去360元,故答案为360;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,由题意得:,解得:y3,经检验,y3是原方程的根,并符合题意,答:乙种礼品的单价是3元【点睛】本题主要考查了一元一次方程的应用,分式方程的应用,解题的关键在于能够准确理解题意,列出方程求解4、(1)5.125;(2);(3)【分析】(1)根据负整数指数幂法则,零指数幂法则以及幂的乘方法则的逆用及积的乘方法则的逆用逐步计算即可;(2)根据积的乘方法则及单项式乘单项式法则、单项式除以单项式法则逐步计算即可;(3)先将原式变形为,再利用平方差公式及完全平方公式计算即可【详解】解:(1)原式;(2)原式;(3)原式【点睛】本题考查了实数的混合运算及整式的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键5、3【分析】此题涉及到负整数指数幂,0指数幂,开方,分别根据各个知识点计算出结果,再计算加减法即可【详解】解:原式=;【点睛】此题主要考查了负整数指数幂,0指数幂,开方,主要是同学们要准确把握各个知识点