人教版八年级数学下册第二十章-数据的分析同步测评练习题.docx
-
资源ID:30718543
资源大小:412.37KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版八年级数学下册第二十章-数据的分析同步测评练习题.docx
人教版八年级数学下册第二十章-数据的分析同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一组数据的平均数是5,则a的值( )A8B5C4D22、年将在北京-张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是( )A甲B乙C都一样D不能确定3、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差甲6.20.25乙6.00.58丙5.80.12丁6.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A甲B乙C丙D丁4、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是( )A4,5,4B4.5,5,4.5C4,5,4.5D4.5,5,45、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:=3.6,=6.3则麦苗又高又整齐的是()A甲B乙C丙D丁6、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A最高分B中位数C极差D平均分7、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数星期日一二三四五六个数11121013131312对于小强做引体向上的个数,下列说法错误的是( )A平均数是12B众数是13C中位数是12.5D方差是8、已知一组数据85,80,x,90的平均数是85,那么x等于( )A80B85C90D959、下列说法中正确的是( )A样本7,7,6,5,4的众数是2B样本2,2,3,4,5,6的中位数是4C样本39,41,45,45不存在众数D5,4,5,7,5的众数和中位数相等10、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A众数B中位数C平均数D方差第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会_(填“变大”、“变小”、“不变”或“不能确定”)2、已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是5,那么另一组数据3x12,3x22,3x32,3x42,3x52的平均数和方差的和为_3、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试分析两人的成绩发现:84, 83.2,13.2, 26.36,由此学校决定让甲去参加比赛,理由是_4、开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温()36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的中位数和众数分别是_5、一组数据7,2,1,3的极差为_三、解答题(5小题,每小题10分,共计50分)1、光明中学八年级(1)班在一次测试中,某题(满分为5分)的得分情况如图,计算这题得分的众数、中位数和平均数2、(1)从下面两幅图中,分别“读”出甲、乙两队员射击成绩的平均数(2)通过估计,比较甲、乙两队员射击成绩的方差的大小,说说你是怎么估计的;(3)分别计算甲、乙两队员射击成绩的方差,看看刚才自己的估计是否正确;(4)如果丙队员的射击成绩如下,那么三人射击成绩的方差谁的最大,谁的最小?你是怎样判断的?3、如图是某月的日历,在此日历上用一个正方形圈出9个数(如6,7,8,13,14,15,20,21,22)(1)图中圈出的9个数的平均数是多少?直接写结果(2)若用正方形圈出此日历中的任意9个数中,位于中心位置的数是m,那么这9个数的和是多少?这9个数的平均数是多少?(3)若用正方形圈出此日历中的9个数,这9个数的和有可能是225吗?试说明理由4、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队5、2021年4月13日,日本政府召开内阁会议正式决定,将福岛第一核电站超过100万公吨的核污水经过滤并稀释后排入大海,这一决定遭到包括福岛民众、日本渔民乃至国际社会的谴责和质疑鉴于此次事件的恶劣影响,某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示根据以上信息解答下列问题:(1)高中代表队五名学生复赛成绩的中位数为 分;(2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好-参考答案-一、单选题1、A【解析】【分析】根据平均数的计算公式计算即可;【详解】数据的平均数是5,;故选A【点睛】本题主要考查了平均数的计算,准确计算是解题的关键2、A【解析】【分析】分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可【详解】解:甲选手平均数为:,乙选手平均数为:,甲选手的方差为:,乙选手的方差为: 可得出:,则甲选手的成绩更稳定,故选:A【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定3、A【解析】【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:,应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,甲的成绩好且发挥稳定,故应选甲,故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键4、C【解析】【分析】根据平均数的计算公式、众数的定义、中位数的定义解答【详解】解:平均数=,数据有小到大排列为1、2、2、4、4、5、5、5、6、6,则这组数据的众数为5,中位数为,故选:C【点睛】此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键5、D【解析】【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可【详解】解:,乙、丁的麦苗比甲、丙要高,甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D【点睛】本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定6、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选:B【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义7、C【解析】【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可【详解】解:由题意得它们的平均数为:,故选项A不符合题意;13出现的次数最多,众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义8、B【解析】【分析】由平均数的公式建立关于x的方程,求解即可【详解】解:由题意得:(85+x+80+90)÷4=85解得:x=85故选:B【点睛】本题考查了平均数,应用了平均数的计算公式建立方程求解9、D【解析】【分析】根据众数定义和中位数定义对各选项进行一一分析判定即可【详解】A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是,故选项B不正确;C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确故选D【点睛】本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键10、D【解析】【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键二、填空题1、变小【解析】【分析】求出去掉一个最高分和一个最低分后的数据的方差,通过方差大小比较,即可得出答案【详解】去掉一个最高分和一个最低分后为88,90,92,平均数为方差为 5.22.67,去掉一个最高分和一个最低分后,方差变小了,故答案为:变小【点睛】本题考查了方差、算数平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解2、49【解析】【分析】根据平均数及方差知识,直接计算即可.【详解】数据,的平均数是2,即,的平均数为:,数据,的方差是5,即,的方差为:,平均数和方差的和为,故答案为:49.【点睛】本题是对平均数及方差知识的考查,熟练掌握平均数及方差计算是解决本题的关键.3、甲的平均成绩高,且甲的成绩较为稳定【解析】【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断【详解】84, 83.2,13.2, 26.36, ,甲的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定4、36.5,36.6【解析】【分析】根据中位数的定义:一组数据从小到大(或从大到小)排列,若数据有奇数个,则最中间的数为中位数,若数据有偶数个,则最中间两数的平均数为中位数,根据众数的定义:一组数据出现次数最多的数,即可判断【详解】共有14个数据,其中第7、8个数据均为36.5,这组数据的中位数为36.5;其中36.6出现了4次,出现次数最多,众数为36.6【点睛】本题考查了中位数和众数,理解中位数和众数的定义是解题的关键5、6【解析】【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可【详解】解:一组数据7,2,1,3的极差为,故答案为:【点睛】本题考查了极差的定义,熟记定义是解本题的关键三、解答题1、众数为3分、中位数为3分、平均数为2.86分【分析】根据中位线和众数的定义、加权平均数的定义进行计算【详解】解:由于得分最多的是3分,占总数的40%,因此众数是3,因为6%+8%+16%=30%<50%,6%+8%+16%+40%=54%>50%,所以得分位于中间的数是3分,即中位数是3,全班同学在该题的平均分为:(分)【点睛】本题考查扇形统计图、众数、中位数、加权平均数等知识,是重要考点,解题的关键是明确扇形统计图中百分比的含义2、(1)甲、乙两人射击的平均数都是8环;(2)甲的方差大,理由见解析;(3)甲的方差是1.4,乙的方差是1.2;(4)丙的方差最大,乙的方差最小,见解析【分析】(1)根据平均数的概念求解可得;(2)由方差的意义可估计大小;(3)根据方差的定义计算可得;(4)先求出丙的平均数,再求出方差,最后进行比较即可【详解】解:(1)根据图可知:甲的平均数为:,乙的平均数为:,故甲、乙两人射击的平均数都是8环(2)甲的方差大估计的方法不唯一例如,可以将甲、乙两人的射击成绩转化为散点图:通过散点图可以发现,两人的平均成绩都是8环,极差都是4环;但是甲集中在平均成绩线上的点只有2个,而乙集中在平均成绩线上的点较多,有4个,分散在其他线上的点较甲少,因此乙的方差较小也可以这样思考:因为方差表示的是数据在平均值附近的波动情况,对于“对称”的条形统计图,它的平均值都位于对称轴处,因此离平均值近的数据越多,离平均值远的数据越少,方差就越小(3)甲的方差是,乙的方差,故乙的方差小;(4)丙的平均数为:,丙的方差为:,丙的方差最大,乙的方差最小【点睛】本题考查了平均数和方差的定义与公式,解题的关键是掌握数形结合的思想进行求解3、(1)14;(2),;(3)不能,见解析【分析】(1)直接计算图中圈出的9个数的平均数即可;(2)中间一个数为m,则其中8个数为:,m,相加即可得到这9个数的和是多少,9个数的和除以即可得到这个数的平均数;(3)用,结合日历可得结果【详解】解:(1)9个数的平均数为:;(2)中间一个数为m,则其中8个数为:,m,它们的和为:,这9个数的平均数为(3)不能,理由如下:若圈出的数和为225,则,则位于中心位置的数是25,由图观察发现,无以25为中心的能圈出9个数的正方形,故不能【点睛】本题考查了列代数式以及整式的加减,读懂题意,根据题意得出日历中的任意9个数的代数式是解本题的关键4、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷29.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)9,则方差是:×4×(109)2+2×(89)2+(79)2+3×(99)21;(3)甲队成绩的方差是1.4,乙队成绩的方差是1,成绩较为整齐的是乙队;故答案为:乙【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,xn的平均数为,则方差S2 (x1)2(x2)2(xn)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立5、(1)95;(2)高中代表队的平均数为95分,初中代表队的平均数为90分;(3)初中代表队学生复赛成绩的方差为40,高中代表队成绩较好【分析】(1)根据中位数的定义求解即可;(2)根据平均数的定义求解即可;(3)根据方差的定义求出初中代表队学生复赛成绩的方差,然后根据平均数和方差越小越稳定判断即可【详解】解:(1)五个人的成绩从小到大排列为:90,90,95,100,100,一共有5个数,第3个数为中位数,中位数是95;(2)高中代表队的平均数(分),初中代表队的平均数(分);(3)初中代表队学生复赛成绩的方差,高中代表队成绩较好【点睛】此题考查了平均数,中位数和方差及其意义,解题的关键是熟练掌握平均数,中位数和方差的求解方法