2021-2022学年浙教版初中数学七年级下册第五章分式专项测评试卷(含答案解析).docx
-
资源ID:30719616
资源大小:296.84KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第五章分式专项测评试卷(含答案解析).docx
初中数学七年级下册第五章分式专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知实数满足,则下列结论:若,则;若,则;若,则;若,则,其中正确的个数是( )A1B2C3D42、一种病毒的长度约为0.000043mm,用科学计数法表示数0.000043正确的是( )ABCD3、31等于()AB3CD34、当时,代数式的值是( )A3B4C5D65、已知关于x的分式方程1无解,则m的值是( )A2B3C2或3D0或36、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD7、等于( )ABCD8、一项工作,甲、乙两人合作,4天可以完成他们合作了3天后,乙另有任务,甲单独又用了天才全部完成问甲、乙两人单独做,各需几天完成?设甲单独做需要x天,根据题意可列出方程()ABCD9、若,则( )ABCD10、蚕丝线的截面面积0.000000785平方厘米,此面积数字可用科学记数法表示为()A7.85×106B7.85×106C7.85×107D7.85×107二、填空题(5小题,每小题4分,共计20分)1、计算:_2、如图,点A,B在数轴上所对应的数分别为-2和 且点A,B到原点的距离相等,则_ 3、计算_4、已知,则_5、当_时,关于的方程会产生增根三、解答题(5小题,每小题10分,共计50分)1、已知a、b互为相反数,m、n互为倒数,求的值2、某社区拟建A,B两类摊位以搞活“地摊经济”,每个摊位的占地面积A类比B类多2平方米建A类,B类摊位每平方米的费用分别为40元,30元若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的(1)求每个A,B类摊位的占地面积(2)已知该社区规划用地70平方米建摊位,且刚好全部用完请写出建A,B两类摊位个数的所有方案,并说明理由请预算出该社区建成A,B两类摊位需要投入的最大费用3、计算或化简:(1)(3)0(0.2)2009×(5)2010 (2)2(x4)(x4)(3)(x2)2(x1)(x1)4、课堂上,李老师给大家出了这样一道题:“当、时,求代数式的值”小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程5、(1)计算:;(2)解方程组:-参考答案-一、单选题1、D【分析】转化为,即可求解;先求出,再求出,即可得到答案;将变形求出值为1,再将变形求出值也为1,即可得到答案;将进行变形为,再将整体代入,即可得到答案【详解】解:因为,所以,故此项正确;因为,则所以,解得:;所以,所以,故此项正确;因为,所以,;所以,故此项正确;因为,所以,故此项正确;故选D【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入2、C【分析】科学记数法的形式是: ,其中10,为整数所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数本题小数点往右移动到4的后面,所以【详解】解:0.000043 故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响3、A【分析】根据负整指数幂的运算法则()即可求解.【详解】解:因为(),所以,故选A【点睛】本题主要考查负整指数幂的运算法则,解决本题的关键是要熟练掌握负整指数幂的运算法则.4、B【分析】根据,得b=3a,代入计算即可【详解】解:,b=3a,=,故选:B【点睛】此题考查求分式的值,根据已知得到b=3a代入计算是求解的关键5、C【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值【详解】解:两边都乘以x(x3),得:x(x+m)x(x3)x3,整理,得:(m+2)x3,解得:,当m+20,即m2时整数方程无解,即分式方程无解,关于x的分式方程1无解,或,即无解或3(m+2)3,解得m2或3m的值是2或3故选C【点睛】本题考查了解分式方程,分式方程的解,解题的关键是熟练掌握解分式方程的方法,注意分母不等于0的条件6、B【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值7、A【分析】直接利用负整数指数幂的性质化简得出答案【详解】解:3-1=,故选:A【点睛】此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键8、B【分析】设甲单独完成需要x天,根据题意列出方程即可求出答案【详解】解:设甲单独完成需要x天,由题意可知:两人合作的效率为,甲的效率为3××1,即故选B【点睛】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型9、A【分析】先根据有理数的乘方,零指数幂计算,然后比较大小,即可求解【详解】解:,故选:A【点睛】本题主要考查了有理数的乘方运算,零指数幂,有理数的比较大小,熟练掌握有理数的乘方运算法则,零指数幂法则是解题的关键10、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000785=7.85×10-7故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、10【分析】先算零指数幂和负整数指数幂,再算加法,即可求解【详解】原式=,故答案是:10【点睛】本题主要考查实数的运算,掌握零指数幂和负整数指数幂的性质,是解题的关键2、-6【分析】根据相反数的性质列出分式方程计算即可;【详解】解:点A,B到原点的距离相等, 点A,B表示的数互为相反数, , 解之:x=-6 经检验x=-6是原方程的根 故答案为:-6【点睛】本题主要考查了相反数的性质和分式方程求解,准确计算是解题的关键3、【分析】根据同底数幂的乘法,积的乘方的逆运算以及零指数幂求解即可【详解】解:故答案为:【点睛】此题考查了同底数幂的乘法,积的乘方的逆运算以及零指数幂,掌握它们的运算规则是解题的关键4、【分析】先将已知的式子化为倒数形式 ,化简后两边平方,再把所要求的式子的倒数化简求值,可得到最终结果【详解】, 故答案为:【点睛】考查分式值的计算,有一定灵活性,解题的关键是先求倒数5、6或【分析】先将分式方程化为整式方程,再求得分式方程的增根,然后求解即可【详解】解:方程两边都乘,得,最简公分母为,原方程增根为或2,把代入整式方程,得,解得;把代入整式方程,得,解得故答案为:6或【点睛】本题考查了分式方程的增根,先把分式方程转化为整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根,掌握分式方程的增根是解题的关键三、解答题1、【分析】直接利用相反数和倒数的定义求出代数式的值,再整体代入分式计算即可【详解】解:a、b互为相反数,m、n互为倒数, a+b=0,mn=1, 【点睛】此题主要考查了相反数和倒数的定义等知识,正确运用整体思想是解题关键2、(1)每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)见解析;2650元【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意:若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的列出分式方程,解方程即可;(2)设建A类摊位a个,B类摊位b个,由题意:该社区规划用地70平方米建摊位,且刚好全部用完列出二元一次方程,求出正整数解即可;求出建成A、B两类摊位需要投入的费用为-30b+2800,b越小,费用越大,即可求解【详解】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意得:,解得:x=3,经检验,x=3是原方程的解,则x+2=5,答:每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)有4个方案,理由如下:设建A类摊位a个,B类摊位b个,由题意得:5a+3b=70,则a=14-b,a、b为正整数,或或或,共有4个方案:A类摊位11个,B类摊位5个;A类摊位8个,B类摊位10个;A类摊位5个,B类摊位15个;A类摊位2个,B类摊位20个;建成A、B两类摊位需要投入的费用为:40×5a+30×3b=200(14-b)+90b=-30b+2800,b越小,费用越大,当b=5时,费用最大值=-30×5+2800=2650(元),即该社区建成A、B两类摊位需要投入的最大费用为2650元【点睛】本题考查了分式方程的应用、二元一次方程的应用等知识;找准等量关系,列出分式方程和二元一次方程是解题的关键3、(1)6;(2)2x232;(3)4x5【分析】(1)第一项根据零指数幂计算,第二项根据积的乘方逆运算计算;(2)先根据平方差公式计算,再去括号即可;(3)先根据完全平方公式、平方差公式计算,再合并同类项;【详解】解:(1)原式1(0.2)2009×(5)2009×(5)1(0.2×5)2009×5156;(2)原式2(x216)2x232;(3)原式x24x4x214x5【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式,完全平方公式,积的乘方法则是解答本题的关键4、当时,原式;当时,原式;当时,原式【分析】根据分式的混合运算法则化简,然后代入求值即可【详解】原式,当时,原式;当时,原式;当时,原式【点睛】本题考查了分式的化简求值,熟练运用分式的混合运算法则是解本题的关键5、(1);(2)【分析】(1)先因式分解、再通分、最后化简即可;(2)用代入消元法解二元一次方程组即可【详解】解:(1);(2),得,得,将代入得,方程组的解为【点睛】本题考查分式的加减、二元一次方程组的解,熟练掌握分式的化简方法,掌握代入消元法和加减消元法解二元一次方程组是解题的关键