2022高考数学一轮复习 7-2 二元一次不等式(组)与简单的线性规划问题课时作业 新人教A版 .doc
-
资源ID:30720121
资源大小:255KB
全文页数:6页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022高考数学一轮复习 7-2 二元一次不等式(组)与简单的线性规划问题课时作业 新人教A版 .doc
第2讲 二元一次不等式(组)与简单的线性规划问题基础巩固题组(建议用时:40分钟)一、选择题1(2015·泰安模拟)不等式组所表示的平面区域的面积为 ()A1 B. C. D.解析作出不等式组对应的区域为BCD,由题意知xB1,xC2.由得yD,所以SBCD×(xCxB)×.答案D2(2014·广东卷)若变量x,y满足约束条件且z2xy的最大值和最小值分别为m和n,则mn()A5 B6 C7 D8解析作出可行域(如图中阴影部分所示)后,结合目标函数可知,当直线y2xz经过点A时,z的值最大,由得则mzmax2×213.当直线y2xz经过点B时,z的值最小,由得则nzmin2×(1)13,故mn6.答案B3(2013·陕西卷)若点(x,y)位于曲线y|x|与y2所围成的封闭区域,则2xy的最小值为()A6 B2C0 D2解析如图,曲线y|x|与y2所围成的封闭区域如图中阴影部分,令z2xy,则y2xz,作直线y2x,在封闭区域内平行移动直线y2x,当经过点(2,2)时,z取得最小值,此时z2×(2)26.答案A4(2014·成都诊断)在平面直角坐标系 xOy中,P为不等式组所表示的平面区域上一动点,则直线OP斜率的最大值为()A2 B.1 C. D.解析作出可行域如图所示,当点P位于的交点(1,1)时,(kOP)max1,故选B.答案B5(2015·济南模拟)已知变量x,y满足约束条件目标函数zx2y的最大值为10,则实数a的值为()A2 B.C4 D8解析结合图形求解作出不等式组对应的平面区域,当目标函数经过点(a,a1)时取得最大值10,所以a2(a1)10,解得a4,故选C.答案C二、填空题6(2015·日照调研)若A为不等式组表示的平面区域,则当a从2连续变化到1时,动直线xya扫过A中的那部分区域的面积为_解析平面区域A如图所示,所求面积为S×2×2××2.答案7在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则|OM|的最小值是_解析如图所示阴影部分为可行域,数形结合可知,原点O到直线xy20的垂线段长是|OM|的最小值,|OM|min.答案8(2015·盐城调研)设x,y满足约束条件若目标函数zabxy(a0,b0)的最大值为35,则ab的最小值为_解析可行域如图所示,当直线abxyz(a0,b0)过点B(2,3)时,z取最大值2ab3,于是有2ab335,ab16,所以ab228,当且仅当ab4时等号成立,所以(ab)min8.答案8三、解答题9(2015·合肥模拟)画出不等式组表示的平面区域,并回答下列问题:(1)指出x,y的取值范围;(2)平面区域内有多少个整点?解(1)不等式组表示的平面区域如图所示结合图中可行域得x,y3,8(2)由图形及不等式组知当x3时,3y8,有12个整点;当x2时,2y7,有10个整点;当x1时,1y6,有8个整点;当x0时,0y5,有6个整点;当x1时,1y4,有4个整点;当x2时,2y3,有2个整点;平面区域内的整点共有2468101242(个)10制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解设投资人分别用x万元,y万元投资甲、乙两个项目,由题意知目标函数zx0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域将zx0.5y变形为y2x2z,这是斜率为2随z变化的一组平行线,当直线y2x2z经过可行域内的点M时,直线y2x2z在y轴上的截距2z最大,z也最大这里M点是直线xy10和0.3x0.1y1.8的交点解方程组得x4,y6,此时z40.5×67(万元)当x4,y6时,z取得最大值,所以投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大能力提升题组(建议用时:25分钟)11已知圆C:(xa)2(yb)21,平面区域:若圆心C,且圆C与x轴相切,则a2b2的最大值为()A5 B29 C37 D49 解析由已知得平面区域为MNP内部及边界圆C与x轴相切,b1.显然当圆心C位于直线y1与xy70的交点(6,1)处时,amax6.a2b2的最大值为621237.故选C.答案C12已知实数x,y满足不等式组若目标函数zyax取得最大值时的唯一最优解是(1,3),则实数a的取值范围为()A(,1) B(0,1) C1,) D(1,)解析作出不等式组对应的平面区域BCD,由zyax,得yaxz,要使目标函数yaxz仅在点(1,3)处取最大值,则只需直线yaxz仅在点B(1,3)处的截距最大,由图象可知akBD,因为kBD1,所以a1,即a的取值范围是(1,)答案D13(2013·广东卷)给定区域D:令点集T(x0,y0)D|x0,y0Z,(x0,y0)是zxy在D上取得最大值或最小值的点,则T中的点共确定_条不同的直线解析线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线xy4上,故T中的点共确定6条不同的直线答案614变量x,y满足(1)设z,求z的最小值;(2)设zx2y2,求z的取值范围;(3)设zx2y26x4y13,求z的取值范围解由约束条件作出(x,y)的可行域如图阴影部分所示由解得A.由解得C(1,1)由解得B(5,2)(1)z.z的值即是可行域中的点与原点O连线的斜率观察图形可知zminkOB.(2)zx2y2的几何意义是可行域上的点到原点O的距离的平方结合图形可知,可行域上的点到原点的距离中,dmin|OC|,dmax|OB|.故z的取值范围是2,29(3)zx2y26x4y13(x3)2(y2)2的几何意义是可行域上的点到点(3,2)的距离的平方结合图形可知,可行域上的点到(3,2)的距离中,dmin1(3)4,dmax8.故z的取值范围是16,64.6