2021-2022学年基础强化北师大版八年级数学下册第五章分式与分式方程章节练习试卷(含答案解析).docx
-
资源ID:30720286
资源大小:235.66KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化北师大版八年级数学下册第五章分式与分式方程章节练习试卷(含答案解析).docx
北师大版八年级数学下册第五章分式与分式方程章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的方程有增根,则m的值是( )A2B1C0D-12、八年级学生去距学校15km的博物馆参观,一部分学生骑自行车先走,过了30min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度若设骑车同学的速度为x千米/时,则所列方程时( )ABCD3、把写成科学记数法的形式,正确的是( )ABCD4、华华同学借了一本书,共280页,要在1周借期内读完当他读了一半时,发现平均每天要多读21页才能在借期内读完他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是( )ABCD5、关于x的分式方程的解是正数,则字母m的取值范围是( )ABC且D且6、如果把分式中的x和y都扩大3倍,那么分式的值( )A扩大3倍B缩小3倍C缩小6倍D不变7、已知:,则的值是()ABC5D58、下列变形正确的是()ABCD9、5G是第五代移动通信技术,应用5G网络下载一个1000KB的文件只需要0.00076秒,下载一部高清电影只需要1秒将0.00076用科学记数法表示应为( )ABCD10、已知a1x+1(x0且x1),a21÷(1a1),a31÷(1a2),则a2021()AxBx+1CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x_时,分式有意义2、0.002021用科学记数法表示为2.021×10m,则m的值为_3、若分式方程的无解,则_4、若分式无意义,则的值为_5、若分式的值为零,则x的值为 _三、解答题(5小题,每小题10分,共计50分)1、列方程解应用题:第24届冬奥会将于2022年2月在中国北京和张家口举行为了迎接冬奥会,某公司接到制作12000件冬奥会纪念品的订单为了尽快完成任务,该公司实际每天制作纪念品的件数是原计划每天制作纪念品件数的1.2倍,结果提前10天完成任务,求原计划每天制作多少件冬奥会纪念品?2、解答(1)计算:(2)解方程:3、计算:4、已知,求代数式的值5、计算:(1)(2)-参考答案-一、单选题1、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x1),得:m1x0,方程有增根,最简公分母x1=0,即增根是x=1,把x=1代入整式方程,得m=2故选A【点睛】考查了分式方程的增根,解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值2、C【分析】设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据同时到达列出方程即可【详解】解:设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据题意列方程得,故选:C【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换3、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0813=故选A【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案【详解】读前一半所用的天数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程5、A【分析】解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可【详解】解:方程两边同时乘以(x+1),得到因为分式方程的解是正数, 故选:A【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键6、A【分析】将x,y用3x,3y代入化简,与原式比较即可【详解】解:将x,y用3x,3y代入得,故值扩大到3倍故选A【点睛】本题考查分式的基本性质,熟悉掌握是解题关键7、D【分析】首先分式方程去分母化为整式方程,求出(ba)的值,把(ba)看作一个整体代入分式约分即可【详解】解:,baab,5;故选:D【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a)看作一个整体代入所求分式约分是解题关键8、B【分析】分式的基本性质:分式的分子与分母都乘以或除以同一个不为0的数(或整式),分式的值不变,利用分式的基本性质逐一分析判断即可.【详解】解:不一定相等,变形不符合分式的基本性质,变形错误,故A不符合题意;,变形符合分式的基本性质,故B符合题意;不一定相等,变形不符合分式的基本性质,变形错误,故C不符合题意;不一定相等,变形不符合分式的基本性质,变形错误,故D不符合题意;故选B【点睛】本题考查的是分式的基本性质,掌握“利用分式的基本性质判断分式变形是否正确”是解本题的关键.9、B【分析】根据题意依据绝对值小于1的正数利用科学记数法表示为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解:0.00076=.故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数决定10、C【分析】根据题中所给已知等式先求出前4个数,发现每3个数一个循环,进而可得则a2021等于a2的值【详解】解:由a1=x+1(x0或x-1),所以,a4=1÷(1-a3)=x+1,2021÷3=6732,故选:C【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律二、填空题1、5【分析】根据分式有意义的条件即可求出答案【详解】解:由分式有意义的条件可知:x-50,x5,故答案为:5【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是:分母不为0是解题的关键2、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、或【分析】去分母,把分式方程化为整式方程,再分两种情况解答即可.【详解】解:去分母: 整理得: 分式方程的无解,所以当时,即 方程无解,则原方程无解,当时,是原方程的增根,此时 解得: 综上:原方程无解时,或 故答案为:或【点睛】本题考查的是分式方程无解的问题,掌握“分式方程无解包括两种情况:去分母后的整式方程无解与分式方程有增根”是解本题的关键.4、-1【分析】根据使分式无意义的条件“分母为0”,计算即可【详解】根据题意有,解得:故答案为:-1【点睛】本题考查使分式无意义的条件掌握使分式无意义的条件是分母为0是解答本题的关键5、1【分析】由题意直接根据分式的值为零时分子等于零,分母不等于零进行分析计算即可【详解】解:因为分式的值为零,所以,解得:.故答案为:1.【点睛】本题考查分式的值为零的条件注意掌握若分式的值为零,需同时具备两个条件分子为0,分母不为0三、解答题1、200件【分析】设原来每天制作x件,根据原来用的时间现在用的时间10,列出方程,求出x的值,再进行检验即可【详解】解:设原计划每天制作x件冬奥会纪念品,则实际每天制作1.2x件冬奥会纪念品 根据题意,得:解得: 经检验,是原方程的解,且符合题意 答:原计划每天制作200件冬奥会纪念品【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程2、(1)(2)【分析】(1)先算乘方,最后根据有理数加减运算法则即可求出值;先算乘方和绝对值,再用乘法分配律进行计算,最后算加减;(2)去括号、移项、合并同类项、系数化为1即可求解;去分母、去括号、移项、合并同类项、系数化为1即可求解;(1)解:原式;原式(2)解: ; 【点睛】本题考查了有理数的混合运算以及解一元一次方程,掌握有理数混合运算顺序和解一元一次方程的一般步骤是解题的关键3、【分析】先计算括号里的减法,同时把除法变为乘法,最后约分即可【详解】【点睛】本题考查了分式的混合运算,注意运算顺序及符号4、,【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值【详解】解:,当时,【点睛】本题考查了分式的化简求值,二次根式的化简,解题的关键是熟练掌握运算法则5、(1);(2)【分析】(1)根据二次根式的运算法则即可求解;(2)根据分式的运算法则即可求解【详解】解:(1)原式(2)原式【点睛】此题主要考查二次根式与分式的运算,解题的关键是熟知其运算法则