中考专题特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合训练试卷(名师精选).docx
-
资源ID:30722028
资源大小:283.23KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中考专题特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合训练试卷(名师精选).docx
初中数学七年级下册第十章数据的收集、整理与描述综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、为了解我市参加中考的5000名学生的身高情况,抽查了其中200名学生的身高进行统计分析下列叙述正确的是( )A5000名学生是总体B以上调查是全面调查C每名学生是总体的一个个体D从中抽取的200名学生的身高是总体的一个样本2、下列调查中,最适合抽样调查的是( )A调查某校七年级一班学生的课余体育运动情况B调查某班学生早餐是否有喝牛奶的习惯C调查某种灯泡的使用寿命D调查某校足球队员的身高3、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况根据条形图提供的信息可知,两次测试最低分在第_ 次测试中,第_次测试较容易()A一,二B二,一C一,一D二,二4、某校为了了解八年级1000名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中正确的有( )这种调查的方式是抽样调查;1000名学生是总体;每名学生的期中数学成绩是个体;100名学生的期中数学成绩是总体的一个样本A1个B2个C3个D4个5、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有( )A这种调查的方式是抽样调查B800名学生是总体C每名学生的期中数学成绩是个体D100名学生的期中数学成绩是总体的一个样本6、为了解1000台新型电风扇的寿命,从中抽取10台作连续运转实验,在这个问题中,下列说法错误的是( )A1000台新型电风扇的寿命是总体B抽取的10台电扇的使用寿命是样本C每台电扇的寿命是个体D抽取的10台电扇是样本容量7、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A90分以上的学生有14名B该班有50名同学参赛C成绩在7080分的人数最多D第五组的百分比为16%8、为了解我县最近一周内每天最高气温的变化情况,宜采用( )A折线统计图B条形统计图C扇形统计图D频数直方图9、2021年我县有101万名初中毕业生参加升学考试,为了了解这101万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )A101万名考生B101万名考生的数学成绩C2000名考生D2000名考生的数学成绩10、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()A14B12C9D8二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子中有若干个白球和个黑球,从中摸出一球记下颜色后放回,重复摸球次,其中摸到黑球的次数为次,盒中有白球约_个2、下列调查中,样本具有代表性的有_为了了解我校学生课外作业负担情况,抽取七(1)班学生调查;为了了解班上学生的睡眠时间,调查班上学号为偶数的学生;为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查;为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数3、第十二届全国人大四次会议审议通过的中华人民共和国慈善法已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900名居民进行调查,并将调查结果制作成了如下不完整的统计图和表: 听说过 不知道 清楚 非常清楚 A B225C根据以上信息求得“非常清楚”所占扇形的百分比为_%4、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_个5、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_kg三、解答题(5小题,每小题10分,共计50分)1、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题: (1) 这次活动共调查了_人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_;(2)请将条形统计图补充完整; (3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?(4)根据上图, 你可以获得什么信息?2、某校为了了解初三年级名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:)分成五组;,并依据统计数据绘制了如下两幅尚不完整的统计图解答下列问题: 这次抽样调查的样本容量是_,并补全频数分布直方图;组学生的频率为_,在扇形统计图中组的圆心角是_度;请你估计该校初三年级体重超过的学生大约有多少名?3、在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A从某所普通中学校随机选取200名学生作为调查对象进行调查;B从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查(1)在上述调查方式中,你认为比较合理的一个是 (填番号)(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在12小时之间的人数m (3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在12小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由4、2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3表1:小莹抽取60名男生居家减压方式统计表(单位:人) 减压方式ABCDE人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人) 减压方式ABCDE人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人) 减压方式ABCDE人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数5、为了了解中学生的体能状况,某校抽取了50名学生进行1分钟跳绳测试,将所得数据整理后,分成5组绘成了频数分布直方图,如图(图中数据含最低值不含最高值)其中前4个小组的频率依次为0.04,0.12,0.4,0.28(1)第4组的频数是多少?(2)第5组的频率是多少?(3)哪一组的频数最大?(4)补全统计图,并绘出频数分布折线图-参考答案-一、单选题1、D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【详解】解:A、5000名学生的身高是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的身高是总体的一个个体,故此选项错误;D、从中抽取的200名学生的身高是总体的一个样本,故此选项正确;故选D【点睛】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点易错易混点:学生易对总体和个体的意义理解不清而错选2、C【解析】【分析】根据抽样调查的定义(从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法)与全面调查的定义(对调查对象的所有单位一一进行调查的调查方式)逐项判断即可得【详解】解:A、“调查某校七年级一班学生的课余体育运动情况”适合全面调查,此项不符题意;B、“调查某班学生早餐是否有喝牛奶的习惯”适合全面调查,此项不符题意;C、“调查某种灯泡的使用寿命”适合抽样调查,此项符合题意;D、“调查某校足球队员的身高”适合全面调查,此项不符题意;故选:C【点睛】本题考查了抽样调查与全面调查,熟记定义是解题关键3、A【解析】【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易故选A【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键4、C【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体本题考查的对象是某校八年级学生期中数学成绩,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本【详解】解:这种调查方式是抽样调查,故正确;总体是八年级1000名学生期中数学成绩,故错误;个体是八年级每个学生的期中数学成绩,这个说法正确,故正确;100名学生的期中数学成绩是总体的一个样本,这个说法正确,故正确;故正确的说法有共3个故选:C【点睛】本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小5、B【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本【详解】解:A、题中的调查方式为抽样调查,选项正确,不符合题意;B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;C、每名学生的期中数学成绩是个体,选项正确,不符合题意;D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;故选B【点睛】本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小6、D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【详解】解:A、1000台新型电风扇的寿命是总体,正确,故选项A不合题意;B、抽取的10台电扇的使用寿命是样本,正确,故选项B不合题意;C、每台电扇的寿命是个体,正确,故选项C不符合题意;D、此次抽样调查的样本容量是,故选项D错误,故选项D合题意故选:D【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象总体、个体与样本的考查对象是相同的,所不同的是范围的大小样本容量是样本中包含的个体的数目,不能带单位7、A【解析】【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在7080分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.8、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可【详解】解:根据统计图的特点,为了解我县最近一周内每天最高气温的变化情况,最适合使用的统计图是折线统计图故选:A【点睛】此题主要考查了统计图的选择根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目9、D【解析】【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解【详解】解:根据样本的定义可得,在这个问题中,样本是2000名考生的数学成绩故选:D【点睛】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量,解题的关键是掌握样本的有关概念10、B【解析】【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案【详解】根据题意,第二组的频数是: 故选:B【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解二、填空题1、15【解析】【分析】可根据“黑球数量=黑球所占比例黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例总共摸球的次数=随机摸到的黑球次数”【详解】解:设盒中原有白球有x个,根据题意得:,解得:x=15,答:盒中原有白球约有15个故答案为:15【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解2、【解析】【分析】根据抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,判断即可【详解】为了了解我校学生课外作业负担情况,抽取七(1)班学生调查,七(1)班不一定具有代表性,不符合题意;为了了解班上学生的睡眠时间,调查班上学号为偶数的学生,具有代表性,符合题意;为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查,具有代表性,符合题意;为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数,星期天抽查不具有代表性,不符合题意故答案为:【点睛】本题考查在作调查时收集数据的代表性问题,掌握抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,这是解题关键3、30【解析】【分析】由“清楚”扇形所对应的圆心角可得其占总体的百分比,再根据各项百分比之和为1可得答案【详解】解:“清楚”的人数占总人数的百分比为×100%25%,“非常清楚”扇形所占的百分比为1(30%+15%+25%)30%,故答案为:30【点睛】本题主要考查扇形统计图,掌握整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解题的关键4、15【解析】【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可【详解】解:设盒子中白球大约有个,根据题意,得:,解得,经检验是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况5、850【解析】【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可【详解】解:大量重复试验发芽率逐渐稳定在0.85左右,1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)故答案为:850【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解三、解答题1、(1)200;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(455015)÷(115%30%)200,表示“支付宝”支付的扇形圆心角的度数为:360°×81°,故答案为:200,81°;(2)使用微信的人数为:200×30%60,使用银行卡的人数为:200×15%30,补充完整的条形统计图如图所示:(3)答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答2、(1),图见解析;(2);(3)名【分析】(1)利用 组学生的频数除以该组所占的百分比,可求出抽样调查的样本容量,再用抽样调查的样本容量减去其它组的频数,即可求出组学生的频数,然后补全频数分布直方图,即可求解;(2)用组学生的频数除以抽样调查的样本容量,可得到组学生的频率,用组的频数除以抽样调查的样本容量,再乘以百分之百,即可求解;(3)求出样本中体重超过的学生的频率,再乘以600,即可求解【详解】解:(1)这次抽样调查的样本容量是,组的频数,补全频数分布直方图,如图:由统计图可知,组学生的频率是,组的圆心角;样本中体重超过的学生有(名),该校初三年级体重超过的学生为:(名)【点睛】本题主要考查了频数直方分布图,扇形统计图,用样本估计总体,从频数直方分布图,扇形统计图准确获取信息是解题的关键3、(1)C;(2)54;(3)54万人;(4)这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量【分析】(1)根据题意和抽样调查的特点,可以选出比较合理的调查方式;(2)根据直方图中的数据,可以计算出m的值;(3)根据直方图中的数据,可以计算出全市每天“停课不停学”的学习时间在12小时及以上的人数有多少;(4)本题答案不唯一,说法只要合理即可【详解】解:(1)由题意可得:从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;(2)m20092361854,故答案为:54;(3)100×54(万),答:全市每天“停课不停学”的学习时间在12小时及以上的人数有54万人;(4)这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量【点睛】本题考查频数分布直方图、全面调查与抽样调查、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答4、(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差;(2)260【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数【详解】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差(2)(人,答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人【点睛】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提5、(1)14;(2)0.16;(3) 170180这一频数最大;(4)见解析【分析】(1)根据总人数以及第四组的频率,求解即可;(2)根据总频率为1,以及其他四组的频率即可求解;(3)观察统计图,即可求除频数最大的一组;(4)按照频数分布直方图以及频数分布折线图的画法,求解即可【详解】解:(1)第4组的频数是0.28×5014;(2)第5组频率为1-0.04-0.12-0.4-0.280.16(3)由统计图可知:170180这一组频数最大(4)由(1)得第四组的频数为14,补全统计图如下:频数分布折线图如图【点睛】本题考查了对频数、频率概念的理解,读频数分布直方图的能力和利用统计图获取信息的能力,画频数分布折线图,解题的关键是理解频数、频率的概念,并从频数分布直方图的中获取相关数据