2021-2022学年度北师大版八年级数学下册第四章因式分解定向测试试题(含答案解析).docx
-
资源ID:30723046
资源大小:126.80KB
全文页数:13页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度北师大版八年级数学下册第四章因式分解定向测试试题(含答案解析).docx
北师大版八年级数学下册第四章因式分解定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果x2+kx10(x5)(x+2),则k应为()A3B3C7D72、已知abc为ABC的三条边边长,且满足等式a22b2c22ab2bc0,则ABC的形状为( )A等腰三角形B等边三角形C直角三角形D钝角三角形3、下列各式能用平方差公式进行分解因式的是( )Ax21Bx22x1Cx2x1Dx24x44、已知m1n,则m3+m2n+2mn+n2的值为( )A2B1C1D25、计算的值是()ABCD26、下列因式分解正确的是( )ABCD7、若、为一个三角形的三边长,则式子的值( )A一定为正数B一定为负数C可能是正数,也可能是负数D可能为08、已知a+b=3,ab=2,则a3b+2a2b2+ab3 的值为( )A5B6C18D129、在实数范围内因式分解2x23xyy2,下列四个答案中正确的是()A(xy)(xy)B(x+y)(x+y)C2(xy)(xy)D2(x+y)(x+y)10、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:3x3+12x_2、分解因式:_3、已知a2a10,则a32a22021_4、分解因式_5、分解因式:mx24mx4m_三、解答题(5小题,每小题10分,共计50分)1、分解因式:2、因式分解:ab44ab34ab2.3、(1)20032-1999×2001(公式法) (2)16(a-b)2-9(a+b)2 (分解因式)4、若的三边长分别为a、b、c,且,判断的形状5、分解因式:4xy24x2yy3-参考答案-一、单选题1、A【分析】根据多项式乘以多项式把等号右边展开,即可得答案【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q)2、B【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据三角形的三边关系得到,从而得到答案【详解】解:a22b2c22ab2bc0;为等边三角形故选B【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以及灵活利用因式分解建立与方程之间的关系来解决问题3、A【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论【详解】A能变形为x212,符合平方差公式的特点,能用平方差公式分解因式;B多项式含有三项,不能用平方差公式分解因式;C多项式含有三项,不能用平方差公式分解因式;D多项式含有三项,不能用平方差公式分解因式故选:A【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键4、C【分析】先化简代数式,再代入求值即可;【详解】m1n,m+n1,m3+m2n+2mn+n2m2(m+n)+2mn+n2m2+2mn+n2(m+n)2121,故选:C【点睛】本题主要考查了代数式求值,准确计算是解题的关键5、B【分析】直接找出公因式进而提取公因式,进行分解因式即可【详解】解:故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键6、B【分析】直接利用提取公因式法以及十字相乘法分解因式,进而判断即可【详解】解:A、,故此选项不合题意;B、,故此选项符合题意;C、,故此选项不合题意;D、,不能分解,故此选项不合题意;故选:B【点睛】本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止7、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解【详解】解:原式=(a-c+b)(a-c-b),两边之和大于第三边,两边之差小于第三边,a-c+b0,a-c-b0,两数相乘,异号得负,代数式的值小于0故选:B【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和第三边,任意两边之差第三边8、C【分析】将a3b+2a2b2+ab3因式分解为ab(a+b)2,然后将a+b=3,ab=2,代入即可【详解】解:a3b+2a2b2+ab3ab(a2+2ab+b2)ab(a+b)2,a+b=3,ab=2,原式2×322×918,故选:C【点睛】本题考查了因式分解化简求值,正确分解因式是解题的关键9、C【分析】首先解关于x的方程,进而分解因式得出即可【详解】解:当2x23xyy20时,解得:x1y,x2y,则2x23xyy22(xy)(xy)故选:C【点睛】此题主要考查了实数范围内分解因式,正确解方程是解题关键10、D【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键二、填空题1、【分析】先提公因式,然后再利用平方差公式求解即可【详解】解:故答案为【点睛】此题考查了因式分解的方法,熟练掌握提公因式法和平方差公式是解题的关键2、#【分析】根据完全平方公式进行因式分解即可【详解】解:原式,故答案为:【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键3、2022【分析】将已知条件变形为a21a、a2a1,然后将代数式a32a22021进一步变形进行求解【详解】解:a2a10,a21a、a2a1,a32a22021,aa22(1a)2021,a(1a)22a2021,aa22a2023,a2a2023,(a2a)2023,120232022故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用4、【分析】原式提取m后,利用完全平方公式分解即可【详解】解:故答案为:【点睛】本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键5、m(x2)2【分析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题1、【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可【详解】解:原式=【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键2、【分析】先提取公因式,再利用公式法分解即可;【详解】原式;【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确运用公式是解题的关键3、(1)12010;(2)(7a-b)(a-7b)【分析】(1)运用完全平方公式和平方差公式进行计算即可;(2)直接运用平方差公式进行计算即可【详解】解:(1)20032-1999×2001=(2000+3)2-(2000-1)(2000+1) =20002+2×2000×3+9-(20002-12) =20002+2×2000×3+9-20002+12 =12010 (2)16(a-b)2-9(a+b)2= = = =【点睛】本题主要考查了分解因式,熟练掌握因式分解的方法是解答本题的关键4、是等边三角形【分析】由题意运用公式法和提取公因式法对进行变形后因式分解,继而可得则有,即可得出的形状【详解】解:,的三边长分别为a、b、c,即有,即是等边三角形.【点睛】本题考查因式分解和等边三角形的性质,熟练掌握运用公式法和提取公因式法分解因式是解题的关键.5、-y(2x-y)2【分析】先提取公因式-y,再利用完全平方公式分解因式即可得答案【详解】4xy24x2yy3=-y(4x2-4xy+y2)=-y(2x-y)2【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止