2022年人教版九年级数学下册第二十七章-相似综合训练试题(名师精选).docx
-
资源ID:30724074
资源大小:629.32KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版九年级数学下册第二十七章-相似综合训练试题(名师精选).docx
人教版九年级数学下册第二十七章-相似综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中, 说法正确的是( )A所有菱形都相似B两边对应成比例且有一组角对应相等的两个三角形相似C三角形的重心到一个顶点的距离, 等于它到这个顶点对边距离的两倍D斜边和直角边对应成比例, 两个直角三角形相似2、下列四条线段中,成比例的是( )A,B,C,D,3、下列图形中,ABC与DEF不一定相似的是( )ABCD4、已知,那么下列等式中正确的是( )ABCD5、若,相似比为,则与的对应角平分线的比为( )A1:2B1:4C1:3D1:96、如图,某学生利用标杆测量一棵大树的高度,如果标杆EC的高为2m,并测得,那么树DB的高度是( )A6mB8mC32mD25m7、如图,矩形的对角线、相交于点E,轴于点B,所在直线交x轴于点F,点A、E同时在反比例函数的图象上,已知直线的解析式为,矩形的面积为120,则k的值是( )ABCD8、如图,D、E分别是ABC的边AB、BC上的点,且DEAC,若BEEC13,则DOE与COA的周长之比为( )ABCD9、如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是()ABCD10、如图,点是正方形的边边上的黄金分割点,且,表示为边长的正方形面积,表示以为长,为宽的矩形面积,表示正方形除去和剩余的面积,:的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、如图,则_3、如图,在RtABC中,C90°,AC9,BC4,以点C为圆心,3为半径做C,分别交AC,BC于D,E两点,点P是C上一个动点,则PA+PB的最小值为 _4、如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y轴上一动点,过点A作ACAB交x轴于点C,点M为线段BC的中点,则PM的最小值为 _5、如图,矩形ABCD中,AD4,AB10,P为CD边上的动点,当DP_时,ADP与BCP相似三、解答题(5小题,每小题10分,共计50分)1、在三角形ABC中,ACAB,CAB,点D是平面内不与B,C重合的任意一点,连接CD,将线段绕点逆时针旋转得到线段CE,连接AD,BE,DE(1)如图1,当60°时, ,并求出直线BE与直线AD所夹的劣角是多少度?(2)如图2,当90°时,若点P,Q分别是AC,AB的中点,点D在直线PQ上,求点A,D,E在同一直线上时的值2、如图,ABC中,C90°,AC4cm,BC3cm,动点P从点B出发以1cm/s速度向点C移动,同时动点Q从C出发以2cm/s的速度向点A移动,其中一个点到终点另一个点也随之停止设它们的运动时间为t(1)根据题意知:CQ ,CP ;(用含t的代数式表示);(2)运动几秒时,CPQ与CBA相似?3、如图,过矩形ABCD(ADAB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE(1)判断四边形AFCE是什么特殊四边形,并证明;(2)过点E作AD的垂线交AC于点P,求证:2AE2ACAP4、阅读:两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:点P是线段AB上一点(APBP),若满足,则称点P是AB的黄金分割点黄金分割在我们的数学学习中也处处可见,比如我们把有一个内角为36°的等腰三角形称为“黄金三角形”(1)理解:如图(1),请将内角分别36°,36°,108°的等腰三角形分割成三个“黄金三角形”,并标出每个“黄金三角形”内角的度数;(2)运用:如图(2),已知等腰三角形ABC为“黄金三角形”,AB=AC,A=36°,BD为ABC的平分线求证:点D是AC的黄金分割点5、如图,在RtABC中,ACB90°,点D在AB上,且(1)求证 ACDABC;(2)若AD3,BD2,求CD的长-参考答案-一、单选题1、D【解析】【分析】根据相似多边形的性质,相似三角形的判定,三角形重心的性质逐项分析判断即可【详解】解:A. 所有菱形不一定相似,故该选项不正确,不符合题意;B. 两边对应成比例且夹角对应相等的两个三角形相似,故该选项不正确,不符合题意;C. 三角形的重心到一个顶点的距离, 等于它到这个顶点对边中点距离的两倍,故该选项不正确,不符合题意;D. 斜边和直角边对应成比例, 两个直角三角形相似,故该选项正确,符合题意;故选D【点睛】本题考查了相似多边形的性质,相似三角形的判定,三角形重心的性质,掌握以上知识是解题的关键2、B【解析】【分析】通过验证、中,任意两两一组的比值是否相等,即可判断【详解】解:A、中,任意两条线段的比值,与其他两个线段的比值都不相等,故错误B、中有:,故正确C、中,任意两条线段的比值,与其他两个线段的比值都不相等,故错误D、中,任意两条线段的比值,与其他两个线段的比值都不相等,故错误故选:B【点睛】本题主要是考查了线段长度是否构成比例,直接判断任意两条线段是否与剩余两条比值相等即可解决本题3、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90°,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90°,所以根据ACB=CDB=90°,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理4、C【解析】【分析】由题意设 则 再逐一代入各选项进行计算与检验即可得到答案.【详解】解: ,设 则 故A不符合题意;故B不符合题意;故C符合题意;则故D不符合题意;故选C【点睛】本题考查的是比例的基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.5、C【解析】【分析】根据相似三角形对应角平分线的比等于相似比的性质解答【详解】两个三角形的相似比为,这两个三角形对应角平分线的比为故选:C【点睛】本题考查了相似三角形的性质:相似三角形对应角平分线的比等于相似比,比较简单6、B【解析】【分析】根据三角形ACE与三角形ABD相似,得到对应边成比例,建立等式求解【详解】解:由题意可得,CEBD,即解得BD8m,故选B【点睛】本题考查了相似三角形的判定与性质,在三角形中一平行线平行于第三边,则这个平行线所截的小三角形与原三角形相似,相似三角形对边边成比例7、C【解析】【分析】过点作于点,设与轴交于点,根据题意, ,求得,进而可得,即,设则,根据面积为120求得的值,点A、E同时在反比例函数的图象上,表示出,则,即 ,即可求得的值【详解】解:如图,过点作于点,设与轴交于点,直线的解析式为,令,令,设则在中,四边形是矩形,矩形的面积为120,即解得根据题意,点A、E同时在反比例函数的图象上,设,则,即 即可故选C【点睛】本题考查了反比例函数与几何图形,相似三角形的性质与判定,一次函数与坐标轴交点问题,矩形的性质,熟练运用以上知识是解题的关键8、B【解析】【分析】根据DEAC,可得BDEBAC,ODEOCA,从而得到 ,再根据相似三角形的周长比等于相似比,即可求解【详解】解:DEAC,BDEBAC,ODEOCA, ,BEEC13, ,DOE与COA的周长之比为故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的周长比等于相似比是解题的关键9、C【解析】【分析】可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题【详解】解:根据勾股定理,AC,BC,所以,夹直角的两边的比为2,观各选项,只有C选项三角形符合,与所给图形的三角形相似故选:C【点睛】此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键10、C【解析】【分析】设正方形ABCD的边长为a,关键黄金分割点的性质得到和,用a表示出、和的面积,再求比例【详解】解:设正方形ABCD的边长为a,点E是AB上的黄金分割点,故选C【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质二、填空题1、#【解析】【分析】由得,将式子化简变形,然后代入求解即可【详解】解:,故答案是:【点睛】本题考查比例的计算,解题的关键是掌握比例的性质2、【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:/,解得:,故答案为:【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键3、【解析】【分析】在CD上截取CG=1,连接PG、CP、BG,证CPGCAP,可得AP=3PG,当G、P、B三点共线时,PA+PB值最小,求出GB长即可【详解】解:在CD上截取CG=1,连接PG、CP、BG,AC9,PC3,ACP=PCG,CPGCAP,PA+PBPG+PB,当G、P、B三点共线时,PA+PB值最小,此时点P与点H重合,最小值为BG长,BC4,C90°,故答案为:【点睛】本题考查了圆的性质和相似三角形的判定与性质,解题关键是利用相似三角形的判定与性质,得出GP=PA4、【解析】【分析】连接,根据直角三角形斜边中线等于斜边一半可得:,则点在线段的垂直平分线上,作线段的垂直平分线交轴,轴于点,则当时,最小,再利用相似三角形的判定和性质,结合勾股定理解答即可【详解】如图:过点作于点,连接,为中点,点在线段的垂直平分线上作线段的垂直平分线交轴,轴于点,当,最小连接,则(,4),设,则,即,(,)在中当时, 最小故答案为:【点睛】本题考查了线段垂直平分线的判定和性质,直角三角形的性质,相似三角形的判定和性质,点到直线的距离,勾股定理等知识,能够综合熟练运用这些性质和判定是解题关键5、2或5或8【解析】【分析】分两种情况:ADPPCB及ADPBCP,再由相似三角形的性质即可求得DP的值【详解】四边形ABCD是矩形BC=AD=4,CD=AB=10 当ADPPCB时,即DP(10DP)=16即解得:DP=2或DP=8当ADPBCP时, DP=PCDP+PC=10DP=5综上所述,当DP的长为2或5或8时,ADP与BCP相似故答案为:2或5或8【点睛】本题考查了矩形的性质,相似三角形的性质,分类讨论思想的运用,特别注意这里有两种情况,不要忽略任意一种情形三、解答题1、(1)1;60°(2)6+22或6-22【解析】【分析】(1)证明ADCBEC即可求得ADBE=1,延长BD,CE交于点,设ABD=,根据三角形内角和即可求得F即直线BE与直线AD所夹的劣角;(2)当点在线段上时,根据P,Q分别为AC,AB的中点,可得PQ是的中位线,进而可得DPC=APQ=45°=CDA,DCA=PCD,证明CPDCDA,设CE=a,则CD=x,设AC=2b,则AP=PC=b,代入比例式求得a=2b,进而证明CAEDAP,设AE=x,AE=3-1b,进而即可求得的值,当在线段上时,同理可得CE=2b,AD=3-1b,进而即可求得的值【详解】解:(1)在三角形ABC中,ACAB,CAB60°ABC是等边三角形AB=AC,将线段绕点逆时针旋转60°得到线段CE,DAE=60°,AD=AE是等边三角形AD=AE,EAD=60°BAD=BAC-DAC=DAE-DAC=CAEBAD=CAEADCBECAD=BE,ABD=ACEADBE=1如图,延长BD,CE交于点ABD=ACE,设ABD=则FBC=ABC-ABD=60°-,FCB=ACB+ACE=60+在FBC中,F=180°-FBC-FCB=60°即直线BE与直线AD所夹的劣角是60°(2)当点在线段上时,如图,ABC,是等腰直角三角形,CDA=45°,ACB=45°P,Q分别为AC,AB的中点,PQBCAPQ=ACB=45°DPC=APQ=45°=CDA,DCA=PCDCPDCDA设CE=a,则CD=a,DE=2a,设AC=2b,则AP=PC=bCPDC=CDAC即ba=a2ba,b>0a=2bDE=2a=2bCED=45°CEA=180°-CED=135°CPD=45°DPA=180°-CPD=135°CEA=DPA又CAE=DACCAEDAP则AEAP=ACDA设AE=x,xb=2b2b+x解得x1=3-1b,x2=-3+1b(舍)AE=3-1bCEAD=2b2b+3-1b=6-22,如图,当在线段上时,同理可得CE=2b,AD=3-1bCEAD=2b3-1b=6+22综上所述的值为6-22或6+22【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,设参数法求解是解题的关键2、(1)2t;3-t;(2)或911秒【解析】【分析】(1)结合题意,直接得出答案即可;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解:若CPQCBA,若CPQCAB,然后列方程求解【详解】解:(1)经过t秒后,CQ=2t,CP=BC-BP=3-t ;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,若CPQCBA,则CPCB=CQCA ,即3-t3=2t4 ,解得:t=65s,若CPQCAB,则CPCA=CQCB,即3-t4=2t3,解得:t=911s,由动点P从点B出发以1cm/s速度向点C移动,同时动点Q从C出发以2cm/s的速度向点A移动,其中一个点到终点另一个点也随之停止,可求出t的取值范围应该为0<t<2 ,验证可知两种情况下所求的t均满足条件,故CPQ与CBA相似,运动的时间为或911秒【点睛】本题考查一元一次方程的实际运用,相似三角形的判定和性质,掌握相似三角形的性质是解决问题的关键3、(1)四边形AFCE是菱形,见解析;(2)见解析【解析】【分析】(1)由过矩形ABCD(ADAB)的对角线AC的中点O作AC的垂直平分线EF,易证得AOECOF,即可得EOFO,则可证得四边形AFCE是平行四边形,又由EFAC,可得四边形AFCE是菱形;(2)由AEPAOE90°,EAPOAE,可证得AOEAEP,又由相似三角形的对应边成比例,即可证得2AE2ACAP【详解】证明:(1)四边形AFCE是菱形理由:由已知可知:AOCO,四边形ABCD是矩形,ADBC,EAOFCO,AEOCFO,在AOE和COF中,EAO=FCOAEO=CFOAO=CO,AOECOF(AAS),EOFO,四边形AFCE是平行四边形,ACEF,四边形AFCE是菱形;(2)AEPAOE90°,EAPOAE,AOEAEP,AOAEAEAP,AE2AOAP,又AC2AO,2AE2ACAP【点睛】本题考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的性质、菱形的判定与性质以及全等三角形的判定与性质注意掌握数形结合思想的应用4、(1)见解析;(2)见解析【解析】【分析】(1)根据“黄金三角形”的定义进行分割即可;(2)证明CBDCAB,结合图形、根据黄金分割的定义判断即可【详解】解:(1)如图,(2)ABC=C=72°又BD平分ABCABD=CBD=ABC=36°BDC=180°CCBD72°ADBD,BCBD即ADBCBD·又CC,CBDACBDCABCDBC=BCACCDAD=ADAC·即D点是AC的黄金分割点【点睛】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割是解题的关键5、(1)见解析;(2)【解析】【分析】(1)根据相似三角形的判定两边成比例且夹角相等的两个三角形相似,即可得出(2)由得,推出,由相似三角形的性质得,即可求出CD的长【详解】(1),;(2),即,【点睛】本题考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质是解题的关键