2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专题练习试卷(含答案详解).docx
-
资源ID:30725139
资源大小:207.31KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专题练习试卷(含答案详解).docx
第二章一元一次不等式和一元一次不等式组专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若ab,则()Aa1bBb+1aC2a+12b+1Da1b+12、已知 ab,则( )Aa2b2Ba+1b+1CacbcD3、下列语句中,是命题的是()若160°,260°,则12;同位角相等吗?画线段ABCD;如果ab,bc,那么ac;直角都相等ABCD4、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )A-3B3C-4D45、下列说法中,正确的是( )Ax3是不等式2x1的解Bx3是不等式2x1的唯一解Cx3不是不等式2x1的解Dx3是不等式2x1的解集6、一次函数ymxn(m,n为常数)的图象如图所示,则不等式mxn0的解集是( )Ax2Bx2Cx3Dx37、不等式的最大整数解为( )A2B3C4D58、若x+2022>y+2022,则( )Ax+2<y+2 Bx2<y2 C2x<2y D2x<2y9、如图,已知正比例函数与一次函数的图象交于点,下面有四个结论:;时,;当时,;其中正确的是( )ABCD10、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折A9B8C7D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图直线yx+b和ykx+4与x轴分别相交于点A(4,0),点B(2,0),则解集为_2、不等式组的解集为 _3、如图,函数和的图象相交于,则不等式的解集为_4、若x>y,试比较大小:3x+5 _3y+5(填“>”、“<”或“”)5、已知a,b是非零实数,若关于x的不等式,所解得,则一次函数的图像必经过点_三、解答题(5小题,每小题10分,共计50分)1、一方有难,八方支援“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲,乙两种货车向武汉运送爱心物资两次满载的运输情况如表:甲种货车辆数乙种货车辆数合计运物资吨数第一次3431第二次2634(1)求甲、乙两种货车每次满载分别能运输多少吨物资;(2)由于疫情的持续,该公司安排甲乙货车共10辆进行第三次物资的运送,运送的物资不少于48.4吨,其中每辆甲车一次运送花费500元,每辆乙车一次运送花费300元,请问该公司应如何安排车辆最节省费用?2、我市某生态果园今年收获了吨李子和吨桃子,要租用甲、乙两种货车共辆,及时运往外地,甲种货车可装李子吨和桃子吨,乙种货车可装李子吨和桃子吨(1)共有几种租车方案?(2)若甲种货车每辆需付运费元,乙种货车每辆需付运费元,请选出最佳方案,此方案运费是多少3、(1)解方程组: (2)解不等式组4、用不等式表示:(1)a与2的和是正数(2)x与y的差小于3(3)x,y两数和的平方不小于4(4)x的一半与y的2倍的和是非负数5、关于x的方程的解大于1,求a的取值范围-参考答案-一、单选题1、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C【详解】解:A、若a0.5,b0.4,ab,但是a1b,不符合题意;B、若a3,b1,ab,但是b+1a,不符合题意;C、ab,2a+12b+1,符合题意;D、若a0.5,b0.4,ab,但是a1b+1,不符合题意故选:C【点睛】此题考查不等式的性质,对性质的理解是解题的关键不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变2、B【分析】根据不等式的性质逐项分析即可【详解】解:A、ab,a-2b-2,故不符合题意; B、ab,-a>-b,-a+1>-b+1,故符合题意; C、ab,当c0时,acbc不成立,故不符合题意; D、ab,当c0时,不成立,故不符合题意;故选B【点睛】本题考查了不等式的性质:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变3、A【分析】根据命题的定义分别进行判断即可【详解】解:若160°,260°,则12,是命题,符合题意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果ab,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理4、A【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解【详解】解:由关于x的不等式组解得关于x的不等式组有且只有3个奇数解,解得关于y的方程3y+6a=22-y,解得关于y的方程3y+6a=22-y的解为非负整数,且为整数解得且为整数又,且为整数符合条件的有、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键5、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立【详解】解:A、当x3时,2×31,成立,故A符合题意;B、当x3时,2×31成立,但不是唯一解,例如x4也是不等式的解,故B不符合题意;C、当x3时,2×31成立,是不等式的解,故C不符合题意;D、当x3时,2×31成立,是不等式的解,但不是不等式的解集,其解集为:x,故D不符合题意;故选:A【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题6、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答【详解】由图象知:不等式的解集为x3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键7、B【分析】求出不等式的解集,然后找出其中最大的整数即可【详解】解:,则符合条件的最大整数为:,故选:B【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键8、C【分析】直接根据不等式的性质可直接进行排除选项【详解】解:x+2022>y+2022,x>y,x+2>y+2,x-2>y-2,-2x<-2y,2x>2y故答案为:C【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可9、D【分析】根据正比例函数和一次函数的性质判断即可【详解】解:直线经过第一、三象限,k0,故正确;与y轴交点在负半轴,b0,故错误;正比例函数经过原点,且y随x的增大而增大,当x0时,y10;故正确;当x-2时,正比例函数在一次函数图象的下方,即kx,故错误故选:D【点睛】本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断10、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可【详解】设打x折,根据题意得:1100×700700×10%,解得:x7,至多可以打7折故选:C【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解二、填空题1、【分析】观察图象可得:当 时,的图象位于 轴的上方,从而得到 的解集为 ;当 时,的图象位于 轴的上方,从而得到 的解集为,即可求解【详解】解:观察图象可得:当 时,的图象位于 轴的上方, 的解集为 ;当 时,的图象位于 轴的上方, 的解集为,解集为 故答案为:【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当 时,的图象位于 轴的上方,当 时,的图象位于 轴的上方是解题的关键2、1x<7【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:解不等式x3<4,得:x<7,解不等式1,得:x1,则不等式组的解集为1x<7,故答案为:1x<7【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、【分析】观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,不等式的解集为,故答案为:【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合4、<【分析】利用不等式的性质进行判断【详解】解:x>y,3x<3y,3x+5<3y+5故答案为:<【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变5、(-2,-1)【分析】根据不等式的解集得到b=2a,代入函数表达式中,将表达式变形,从而得到一组固定的x,y值即可【详解】解:关于x的不等式,解得,且a0,b=2a,b0,当x=-2时,y=-1,即的图像必经过点(-2,-1)故答案为:(-2,-1)【点睛】本题考查了一次函数图象上点的坐标特征,不等式的解集,解题的关键是能够将函数表达式进行合理变形三、解答题1、(1)甲、乙两种货车每次满载分别能运输5吨和4吨物资;(2)该公司应安排甲种货车9辆,乙种货车1辆最节省费用【分析】(1)设甲、乙两种货车每次满载分别能运输x吨和y吨物资,根据表中数据列出二元一次方程组进行解答便可;(2)设安排甲货车z辆,乙货车(10-z)辆,总运费为w元,再根据题意列出w关于z的一次函数解析式,最后根据一次函数的性质求得z的值,进而得安排货车的方案【详解】解:(1)设甲、乙两种货车每次满载分别能运输x吨和y吨物资,根据题意,得,解得:,甲、乙两种货车每次满载分别能运输5吨和4吨物资,答:甲、乙两种货车每次满载分别能运输5吨和4吨物资;(2)设安排甲货车z辆,乙货车(10-z)辆,总运费为w元,根据题意得,w=500z+300(10-z)=200z+3000,2000,w随z的增大而增大,运送的物资不少于48.4吨,又z是整数,当z=9时,w的值最小为w=200×9+3000=4800,答:该公司应安排甲种货车9辆,乙种货车1辆最节省费用【点睛】本题考查了二元一次方程组和一元一次不等式的应用,一次函数的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案2、(1)共有三种方案;(2)租甲,乙两种货车各3辆的方案最佳,运费是5100元【分析】(1)本题的不等式关系为:甲车装的李子的重量+乙车装的李子的重量15,甲车装的桃子的重量+乙车装的桃子的重量8,可根据此不等式关系得出不等式组,求出自变量的取值范围,然后得出符合条件的自变量的值(2)根据(1)得出的租车方案,然后分别比较出各种方案的总费用,判定出最佳的方案【详解】解:(1)设安排甲种货车x辆,乙种货车(6-x)辆,根据题意,得:,解得:,3x5x取整数有:3,4,5,共有三种方案(2)租车方案及其运费计算如下表方案甲种车乙种车运费(元)一331000×3+700×3=5100二421000×4+700×2=5400三511000×5+700×1=5700答:共有三种租车方案,其中第一种方案最佳,运费是5100元【点睛】本题考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述语,根据:水果的重量汽车的运载量列不等式解答3、(1);(2)2x3【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)+×5得:27x=23+17×5,解得:x=4,将x=4代入中,得:20y=17,解得:y=3,原方程组的解为 (2) ,解:解得:x2, 解得:x3, 不等式组的解集为:2x3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键4、(1)a+20(2)x-y3(3)(x+y)24(4)x+2y0【分析】结合不等式的定义以及题意列不等式即可(1)因为正数都大于0,所以“a与2的和是正数”可表示为:a+20(2)“x与y的差小于3”可表示为:x-y3(3)因为“不小于3”就是“大于或等于”,所以“x,y两数和的平方不小于4”可表示为:(x+y)24(4)因为“非负数”就是“正数或0”,所以“x的一半与y的2倍的和是非负数”可表示为:x+2y0【点睛】本题考查了列不等式,用符号“”或“”表示大小关系的式子,叫做不等式 如,像这样用符号“”表示不等关系的式子也是不等式注意常见的符号有“、”,分别读作“大于、小于、不等于、大于或等于、小于或等于” 其中“”又读作“不小于”,“”又读作“不大于”在不等式“”或“”中,a叫不等式的左边,b叫不等式的右边在列不等式时,一定要注意表示不等式关系的关键词,如:正数、非负数、不大于、至少等5、a0【分析】先解方程得出x,根据方程的解大于1得出关于a的不等式,解之即可【详解】解:解不等式6xa42x2a,得x,根据题意,得:1,解得a0【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变