2021-2022学年最新北师大版八年级数学下册第五章分式与分式方程定向测试练习题.docx
-
资源ID:30725774
资源大小:300.39KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新北师大版八年级数学下册第五章分式与分式方程定向测试练习题.docx
北师大版八年级数学下册第五章分式与分式方程定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、分式可变形为( )ABCD2、如果关于x的方程无解,则a( )A1B3C1D1或33、已知关于x的分式方程的解是正数,则m的取值范围是( )ABC且D且4、化简的结果是( )ABCD5、某种微粒的直径为0.0000058米,那么该微粒的直径用科学记数法可以表示为( )A0.58×106B5.8×106C58×105D5.8×1056、华华同学借了一本书,共280页,要在1周借期内读完当他读了一半时,发现平均每天要多读21页才能在借期内读完他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是( )ABCD7、分式中a和b都扩大10倍,那么分式值()A不变B扩大10倍C缩小10倍D缩小100倍8、在,中,分式的个数是()A1B2C3D49、下列各式中,是分式的是( )ABCD10、下列约分正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙二人从同一地点同时出发沿相同路线去往同一目的地,甲一半路程以速度a行驶,一半路程以速度b行驶;乙一半时间以速度a行驶,一半时间以速度b行驶,问谁先到达目的地?()下列结论:甲先到;乙先到;甲、乙同时到达;无法判断其中正确的结论是_ (只需填入序号)2、使分式有意义的x的取值范围是_3、若分式无意义,则的值为_4、若在实数范围内有意义,则的取值范围是_5、若是分式方程的根,则a的值为 _三、解答题(5小题,每小题10分,共计50分)1、2022年元旦及春节来临之际,我市对城市亮化工程招标,按照甲、乙两个工程队的投标书,甲、乙两队施工一天的工程费分别为1.5万元和1.2万元,根据甲乙两队的投标书测算,应有三种施工方案:甲队单独做这项工程刚好如期完成乙队单独做这项工程,要比规定日期多3天完成若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成(1)求规定如期完成的天数(2)在确保如期完成的情况下,你认为以上三种方案哪种方案最节省工程款;通过计算说明理由2、先化简,再求值:(x+)÷(x+1),其中x3、星期六,小明与妈妈到离家12km的张家界市博物馆参观小明从家骑自行车先走,1h后妈妈骑摩托车从家出发,沿相同路线前往博物馆,结果他们同时到达已知妈妈骑摩托车的平均速度是小明骑自行车平均速度的3倍,求妈妈骑摩托车的平均速度4、(1)分解因式:4m236; 2a2b8ab2+8b3.(2)解分式方程:; 5、计算:(1)(2)(3)(4)-参考答案-一、单选题1、C【分析】根据分式的基本性质进行分析判断【详解】解:,故C的变形符合题意,A、B和D的变形不符合题意,故答案为:C【点睛】本题考查分式的基本性质,理解分式的基本性质(分式的分子,分母同时乘以或除以同一个不为零的数或式子,分式仍然成立)是解题关键2、B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x4a,得a值【详解】,去分母,得3=x-1+a,整理,得x4a,令x-10,得x=1,4a1,a3故选B【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键3、D【分析】先求出分式方程的解,由方程的解是正数得m-2>0,由x-10,得m-2-10,计算可得答案【详解】解:,m-3=x-1,得x=m-2,分式方程的解是正数,x>0即m-2>0,得m>2,x-10, m-2-10,得m3,且,故选:D【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键4、D【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【点睛】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母5、B【分析】将原数表示成形式a×10-n(1|a|10,n为正整数)【详解】解:0.0000058米用科学记数法可以表示为5.8×10-6米故选:B【点睛】本题主要考查了运用科学记数法表示较小的数,其一般形式为a×10-n(1|a|10,n为正整数),确定a和n的值成为解答本题的关键6、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案【详解】读前一半所用的天数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程7、C【分析】根据题意分别用10a和10b去代换原分式中的a和b,进而利用分式的基本性质化简即可【详解】解:分别用10a和10b去代换原分式中的a和b,得,故分式的值缩小10倍故选:C【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论8、C【分析】根据分式的定义逐个分析判断即可【详解】解:在,中,分式有,共3个,是整式故选:C【点睛】本题考查了分式的判断,掌握分式的定义是解题的关键一般地,如果、(不等于零)表示两个整式,且中含有字母,那么式子就叫做分式,其中称为分子,称为分母9、A【详解】解:A、是分式,故本选项符合题意;B、是整式,不是分式,故本选项不符合题意;C、是整式,不是分式,故本选项不符合题意;D、是整式,不是分式,故本选项不符合题意;故选:A【点睛】本题主要考查了分式的定义,熟练掌握形如 (其中 为整式,且分母 中含有字母)的式子叫做分式是解题的关键10、D【分析】根据分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案【详解】解:A、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,故A错误;B、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,原式=,故B错误;C、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,不满足分式基本性质,故C错误;D、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,故D正确;故选:D【点睛】本题考查了分式的基本性质,分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变二、填空题1、【分析】不妨设两地的路程为1,甲走完全程用的时间为m,乙走完全程用的时间为n,由路程速度×时间,得甲车到达指定地点的时间为,乙车到达指定地点的时间为;比较甲,乙的大小即可【详解】解:设总路程为1,甲走完全程用的时间为m,乙走完全程用的时间为n,甲:,乙:,整理得 ,甲到达用的时间更多,所以乙先到故答案为:【点睛】本题考查了分式加减运算的实际应用,找到合适的等量关系是解决问题的关键本题是一道考查行程问题的应用题,解此类问题只要把握住路程速度×时间,即可找出等量关系,列出方程要注意找出题中隐含的条件,如本题甲乙二人相同的行驶路程2、【分析】根据分式有意义的条件,列出不等式,进而即可求解【详解】解:由题意得:x-10,故答案是:【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于0,是解题的关键3、-1【分析】根据使分式无意义的条件“分母为0”,计算即可【详解】根据题意有,解得:故答案为:-1【点睛】本题考查使分式无意义的条件掌握使分式无意义的条件是分母为0是解答本题的关键4、且【分析】根据分母不等于0,且被开方数是非负数列式求解即可【详解】由题意得且解得且故答案为:且【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:当代数式是整式时,字母可取全体实数;当代数式是分式时,考虑分式的分母不能为0;当代数式是二次根式时,被开方数为非负数5、6【分析】首先根据题意,把代入分式方程中,然后根据一元一次方程的解法,求出a的值即可【详解】解:将代入分式方程中,可得:,解得,故答案为:6【点睛】本题考查了分式方程的解,解题的关键是熟练掌握分式方程解的意义三、解答题1、(1)按规定用6天如期完成;(2)方案最节省工程款且不误期【分析】(1)设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x+3 )天,由“若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成”列出方程并解答(2)方案、不耽误工期,符合要求,可以求费用,方案显然不符合要求【详解】(1)解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x+3)天解得x6,经检验:x6是原方程的解,且适合题意,答:按规定用6天如期完成;(2)在不耽误工期的情况下,有方案和方案两种方案合乎要求,但方案需工程款1.5×69 (万元),方案需工程款1.5×2+1.2×610.2(万元),因为10.29,故方案最节省工程款且不误期【点睛】此题主要考查了分式方程的应用,找到合适的等量关系是解决问题的关键在既有工程任务,又有工程费用的情况下先考虑完成工程任务,再考虑工程费用2、;【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【详解】(x+)÷(x+1),当x时,原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法3、妈妈骑摩托车的平均速度是24km/h【分析】设小明骑自行车的平均速度为x km/h,则妈妈骑摩托车的平均速度为3x km/h,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】解:设小明自行车的平均速度为xkm/h,则妈妈骑摩托车的速度为3xkm/h,根据题意得,解得,x=8,经检验,x=8是原方程的根,3x=3×8=24(km/h)答:妈妈骑摩托车的平均速度是24km/h【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键4、(1)4(m3)(m+3); 2b(a2b)2;(2)x1;原方程无解【分析】(1)先提公因式,然后利用平方差公式分解因式即可; 先提公因式,然后利用平方差公式分解因式即可;(2)先对分子分母因式分解,然后去分母,然后解方程求解即可;先去分母,然后解方程求解即可【详解】解:(1)4m236=4(m9)=4(m3)(m+3) 2a2b8ab2+8b3 =2b(a2-4ab+4b2) =2b(a2b)2(2)解:1x(x+2)(x+2)(x2)6x2+2xx2+462x2x1检验:把x1代入(x+2)(x2)0原方程的解是x1222x12(x3)2x12x+6x+2x1+62x3检验:把x3代入(x3)0x3不是原方程的解原方程无解【点睛】此题考查了因式分解的方法和解分式方程,解题的关键是熟练掌握因式分解的方法和解分式方程的步骤因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等5、(1)(2)(3)(4)【分析】(1)根据二次根式的乘法运算可进行求解;(2)根据分式的加法运算可进行求解;(3)利用平方差公式进行整式的运算即可;(4)先化简,然后再进行二次根式的运算即可(1)解:;(2)解:;(3)解:原式=;(4)解:原式=【点睛】本题主要考查二次根式的混合运算、分式的加减运算及整式的运算,熟练掌握各个计算法则是解题的关键