2022年人教版八年级数学下册第十七章-勾股定理专项攻克试卷(无超纲带解析).docx
-
资源ID:30725834
资源大小:659.98KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版八年级数学下册第十七章-勾股定理专项攻克试卷(无超纲带解析).docx
人教版八年级数学下册第十七章-勾股定理专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1,图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3若正方形EFGH的边长为3,则S1+S2+S3的值是( )A20B27C25D492、我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作周髀算经中汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称之为“赵爽弦图”现在勾股定理的证明已经有400多种方法,下面的两个图形就是验证勾股定理的两种方法,在验证著名的勾股定理过程,这种根据图形直观推论或验证数学规律和公式的方法,简称为 “无字证明”在验证过程中它体现的数学思想是( )A函数思想B数形结合思想C分类思想D统计思想3、如图,长方体的底面边长分别为1cm和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要( )A8 cmB10 cmC12 cmD15 cm4、如图,RtABC中,C90°,AD平分BAC交BC于点D,DEAB交AC于点E,已知CE3,CD4,则AD长为()A7B8CD5、在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为( )A1BCD6、如图,黑色部分长方形的面积为( )A24B30C40D487、如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(ab),则下列说法:a2+b2=25,ab=1,ab=12,a+b=7正确的是()ABCD8、若等腰三角形两边长分别为6和8,则底边上的高等于( )A2BC2或D109、如图,在RtABC中,ABC=90°,AC=10,AB=6,则图中五个小直角三角形的周长之和为( )A14B16C18D2410、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,线段,点E、F为线段AB上两点从下面4个条件中:;,选择一个条件,使得和全等则所有满足的条件是_(填序号)2、如图,长方形纸片ABCD中,AB8cm,BC17cm,点O在边BC上,且OB10cm将纸片沿过点O的直线折叠,若点B恰好落在边AD上的点F处,则AF的长为 _cm3、已知跷跷板长为3.9米,小明和小红坐在两端玩跷跷板,在这个过程中,跷跷板的两端端点在水平方向的距离的最小值为3.6米,此时较高端点距离地面的高度等于 _米4、如图,若ABCEFC,且CF3cm,EFC60°,则AC_5、如图,正方形OABC的边OC落在数轴上,OC2,以O为圆心,OB长为半径作圆弧与数轴交于点D,则点D表示的数是 _三、解答题(5小题,每小题10分,共计50分)1、如图,RtABC中的顶点A,C分别在平面直角坐标系的x轴,y轴上,且ACB=90°,AC=8,BC=4当OA=OC时,求四边形OABC的面积2、已知ABC中,C=90°,BC=3cm,BD=12cm,AD=13cm,ABC的面积是6cm2(1)求AB的长度;(2)求ABD的面积3、如图,ABC中,AB=AC=8厘米,BC=6厘米,点D为AB的中点动点P在线段BC上以2厘米/秒的速度向点C运动,同时,动点Q在线段CA上由点C向点A运动,连接DP,PQ设点P运动的时间为t秒,回答下列问题:(1)当点Q的运动速度为_厘米/秒时,BPD和CPQ全等;(2)若动点P的速度不变,同时动点Q以5厘米/秒的速度出发,两个点运动方向不变,沿ABC的三边运动请求出两点首次相遇时的t值,并说明此时两点在ABC的哪一条边上;在P、Q两点首次相遇前,能否得到以PQ为底的等腰APQ?如果能,请直接写出t值;如果不能,请说明理由4、如图,在ABC中,ADBC,垂足为点D,AB13,BD5,AC15(1)求AD的长;(2)求BC的长5、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?-参考答案-一、单选题1、B【分析】根据八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,得出CGKG,CFDGKF,再根据S1(CG+DG)2,S2GF2,S3(KFNF)2,S1+S2+S33GF2,即可求解【详解】解:在RtCFG中,由勾股定理得:CG2+CF2=GF2,八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,CG=KG=FN,CF=DG=KF,S1=(CG+DG)2=CG2+DG2+2CGDG=CG2+CF2+2CGDG=GF2+2CGDG,S2=GF2,S3=(KF-NF)2,=KF2+NF2-2KFNF=KF2+KG2-2DGCG=FG2-2CGDG,正方形EFGH的边长为3,GF2=9,S1+S2+S3=GF2+2CGDG+GF2+FG2-2CGDG=3GF2=27,故选:B【点睛】本题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质等知识,根据已知得出S1+S2+S3=3GF2=27是解题的关键2、B【分析】利用各类数学思想的概念及相关应用,进行判断分析即可【详解】解:两个图都验证了勾股定理即:的成立,故属于数形结合思想故选:B【点睛】本题主要是考查了数形结合思想在勾股定理的证明中的应用,明确数形结合思想的含义及其与勾股定理的证明的关系,是解决本题的关键,另外,数形结合思想还可用于函数与方程、不等式当中,后面学习一定要注意该思想的应用3、B【分析】立体图形展开后,利用勾股定理求解【详解】解:将长方体沿着边侧面展开,并连接,如下图所示:由题意及图可知:, 两点之间,线段最短,故的长即是细线最短的长度,中,由勾股定理可知:,故所用细线最短需要 故选:B【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键4、D【分析】根据角平分线的定义以及平行线的性质可得,根据勾股定理求出的长度,然后根据勾股定理计算即可【详解】解:AD平分BAC交BC于点D,DEAB,CE3,CD4,C90°,故选:D【点睛】本题考查了角平分线的定义,平行线的性质,等角对等边判定等腰三角形,勾股定理等知识点,根据题意得出是解本题的关键5、C【分析】根据RtABC和勾股定理可得出AB两点间的距离【详解】解:在RtABC中,AC1,BC,可得:AB,故选:C【点睛】本题考查了勾股定理,得出正方体上A、B两点间的距离为直角三角形的斜边是解题关键6、B【分析】根据勾股定理求出直角三角形的斜边,再利用长方形面积公式进行求解即可【详解】解:在直角三角形中,两直角边为6和8,直角三角形的斜边为,长方形面积为:,故选B【点睛】本题考查了勾股定理的应用,长方形面积的计算,解题的关键是熟练掌握勾股定理7、D【分析】由大的正方形的边长为结合勾股定理可判断,由小的正方形的边长为 结合小正方形的面积可判断,再利用 结合可判断,再由可判断,从而可得答案.【详解】解:由题意得:大正方形的边长为 故符合题意;用a、b表示直角三角形的两直角边(ab),则小正方形的边长为: 则(负值不合题意舍去)故符合题意; 而 故符合题意; (负值不合题意舍去)故符合题意;故选D【点睛】本题考查的是以勾股定理为背景的几何面积问题,同时考查了完全平方公式的应用,熟练的应用完全平方公式的变形求值是解本题的关键.8、C【分析】因为题目没有说明哪个边为腰哪个边为底,所以需要讨论,当6为腰时,此时等腰三角形的边长为6、6、8;当8为腰时,此时等腰三角形的边长为6、8、8;然后根据等腰三角形的高垂直平分底边可运用勾股定理的知识求出高【详解】解:ABC是等腰三角形,ABAC,ADBC,BDCD,边长为6和8的等腰三角形有6、6、8与6、8、8两种情况,当三边是6、6、8时,底边上的高AD2;当三边是6、8、8时,同理求出底边上的高AD是故选C【点睛】本题主要考查了勾股定理和等腰三角形的性质,解题的关键在于能够利用分类讨论的思想求解9、D【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长【详解】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为ACBCAB,BC,五个小直角三角形的周长之和为ACBCAB24故选:D【点睛】主要考查了勾股定理的知识和平移的性质,难度适中,需要注意的是:平移前后图形的大小、形状都不改变10、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理二、填空题1、【分析】条件利用SSA不能证明全等;条件可以用SAS证明两个三角形全等;条件先证明,再利用AAS即可证明;条件可利用AAS证明两个三角形全等【详解】解:如图1,过C作于M,过D作于N,和是等腰直角三角形,符合条件的E和F在线段AB上各有两个点,如图1,不一定和全等,故不符合题意;如图2,在和中,故符合题意;如图3,过C作于M,过D作于N,由知,且,E和F在线段AB上各存在一个点,在和中,在和中,故符合题意;如图4,在和中,故符合题意故答案为:【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件2、16【分析】过点F作FEBC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB10cm在 中,由勾股定理,可得OE=6cm,即可求解【详解】解:如图,过点F作FEBC于点E,则EF=AB=8cm,AF=BE,在长方形ABCD中,CD=AB=8cm,根据题意得:OF=OB10cm在 中,由勾股定理得: ,AF=BE=OB+OE=16cm故答案为:16【点睛】本题主要考查了勾股定理,图形的折叠,熟练掌握勾股定理,图形折叠前后,对应线段相等,对应角相等是解题的关键3、#【分析】设较高端点距离地面的高度为h米,此时,跷跷板长即为直角三角形的斜边长,两端端点在水平方向的距离的最小值即为一条直角边长,利用勾股定理即可求出结果【详解】解:设较高端点距离地面的高度为h米,根据勾股定理得:h23.923.622.25,h1.5(米),故答案为:1.5【点睛】本题考查了勾股定理的应用,掌握勾股定理是解决问题的关键4、【分析】根据得出,得出,根据勾股定理得,由即可得出【详解】解:,故答案是:【点睛】本题考查了三角形全等,勾股定理,含对应的边等于斜边的一半,解题的关键是掌握全等三角形的性质5、2【分析】根据勾股定理求出OB的长,即OD的长,再根据两点间的距离求出点D对应的数【详解】解:由勾股定理知:OB2,OD2,点D表示的数为2,故答案为:2【点睛】此题考查了正方形的性质,勾股定理和实数与数轴,得出OD的长是解题的关键三、解答题1、32【分析】先利用勾股定理求得OA和OC的长,再利用三角形的面积公式求解即可【详解】解:OA=OC,OAC是等腰直角三角形,AC=8,OA2+OC2=AC2,OA=OC=4,所以S四边形OABC=SOAC+SABC=×4×4+×4×8=32【点睛】本题考查了等腰三角形的性质,勾股定理,熟记各图形的性质并准确识图是解题的关键2、(1)(2)【分析】(1)根据直角三角形ABC的面积求得AC,再根据勾股定理即可求得AB的长;(2)根据勾股定理的逆定理证明ABD是直角三角形,即可求解【详解】解:(1)C90°(2)【点睛】此题主要是考查了勾股定理及其逆定理注意:直角三角形的面积等于两条直角边的乘积的一半3、(1)或2厘米/秒时;(2),两个点在ABC的边AC上首次相遇;0或【分析】(1)分当BPDCPQ时和当BPDCQP时,利用全等三角形的性质求解即可;(2)根据当PQ相遇时,Q点比P点多走的距离为AB+AC,得到,由此求解即可;分当P在BC上靠近B一端,Q在AC上时,当P在BC上靠近C一端,Q在AC上时,当P在AC上,Q在AB上时,当P在AC上,Q在BC上时,进行分类讨论求解即可【详解】解:(1)当BPDCPQ时,Q点的运动速度为;当BPDCQP时,Q点的运动速度为;综上所述,当点Q的运动速度为或2厘米/秒时,BPD和CPQ全等;(2)当PQ相遇时,Q点比P点多走的距离为AB+AC,解得,两个点在ABC的边AC上首次相遇;如图所示,当P在BC上靠近B一端,Q在AC上时,过点A作AEBC于E, ,解得或(舍去);同理可求出当P在BC上靠近C一端,Q在AC上时,结果与上面相同;如图所示,当P在AC上,Q在AB上时,AQ=AP,解得;如图所示,当P在AC上,Q在BC上时,同图可知此时不存在t使得AQ=AP,综上所述,当t=0或,使得APQ是以PQ为底的等腰三角形【点睛】本题主要考查了全等三角形的性质,等腰三角形的性质,勾股定理,解题的关键在于能够利用分类讨论的思想求解4、(1)12;(2)14【分析】(1)在直角三角形ABD中利用勾股定理求解即可;(2)先在直角三角形ADC中利用勾股定理求出CD的长,再由BC=BD+CD求解即可【详解】解:(1)ADBC,ADB=ADC=90°,;(2)ADC=90°,AD=12,AC=15,BC=BD+CD=14【点睛】本题主要考查了勾股定理,解题的关键在于能够熟练掌握勾股定理5、(1)12米;(2)7米【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解【详解】解:(1)由题意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键