2021-2022学年度北师大版七年级数学下册第五章生活中的轴对称专题攻克试题(含解析).docx
-
资源ID:30725839
资源大小:1.08MB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度北师大版七年级数学下册第五章生活中的轴对称专题攻克试题(含解析).docx
七年级数学下册第五章生活中的轴对称专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是轴对称图形的是( )ABCD2、在下列四个标志中,是轴对称图形的是( )ABCD3、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD4、放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风筝剪纸作品中,不是轴对称图形的是()ABCD5、下列说法正确的是( )A轴对称图形是由两个图形组成的B等边三角形有三条对称轴C两个等面积的图形一定轴对称D直角三角形一定是轴对称图形6、如图点D,E分别在ABC的边BC,AB上,连接AD、DE,将ABC沿直线DE折叠后,点B与点A重合,已知AC6cm,ADC的周长为14cm,则线段BC的长为( )A6cmB8cmC12cmD20cm7、下列图形中,属于轴对称图形的是( )ABCD8、下面所给的银行标志图中是轴对称图形的是( )ABCD9、在平面直角坐标系中,点P(2,3)关于x轴对称的点是()A(2,3)B(2,3)C(3,2)D(2,3)10、如图,下列图形中,轴对称图形的个数是()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有_个2、如图,把长方形沿EF对折后使两部分重合,若,则_3、如图,ABC中,AB8cm,BC5cm,AC6cm,沿过点B的直线折叠三角形,使点C落在AB边上的点E处,折痕为BD,则AED的周长长度为_4、如图,如图,AOB=45º,点M、N分别在射线OA、OB上,MN=7,OMN的面积为14,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,P1OP2_°,OP1P2的面积最小值为_5、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕若与重合,则EBD为_度三、解答题(5小题,每小题10分,共计50分)1、如图,在边长为1的小正方形组成的网格中,点A,B,C均在小正方形的顶点上(1)在图中画出与关于直线l成轴对称的;(2)在直线l上找一点P,使得的周长最小;(3)求的面积2、如图,在ABC中,ABAC,D是BC的中点,DEAB,DFAC,E,F为垂足求证:DEDF3、如图,在4×4的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,请在下面的图中至少画出四个不同的方案,并画出对称轴4、如图所示的方格纸中,每个小方格的边长都是1,点A(4,1)、B(3,3)、C(1,2)(1)作ABC关于y轴对称的A'B'C';(2)在x轴上找出点P,使PA+PC最小,在图中描出满足条件的P点(保留作图痕迹),并直接写出P点的坐标5、在下图给出一个图案的左半部分,其中虚线是这个图案的对称轴请你画出这个图案的右半部分,使它组成一个完整的图案-参考答案-一、单选题1、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键2、B【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形不是轴对称图形,不符合题意;B中图形是轴对称图形,符合题意;C中图形不是轴对称图形,不符合题意;D中图形不是轴对称图形,不符合题意,故选:B【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键3、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键4、B【分析】根据轴对称图形的概念求解在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴【详解】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意故选:B【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合5、B【分析】根据轴对称图形的定义逐一进行判定解答【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意故选:B【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴6、B【分析】由折叠的性质得出BDAD,由题意得出AD+DCBD+DCBC即可得出答案【详解】解:ABC沿直线DE折叠后,点B与点A重合,BDAD,AC6cm,ADC的周长为14cm,AD+DC1468cm,BD+DCBC8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出ADBD是解题关键7、A【分析】根据轴对称的定义,把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称图形判断即可;【详解】根据轴对称图形的定义可知,是轴对称图形;故选A【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键8、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C. 不是轴对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论【详解】解:点P(2,3)关于x轴对称的点的坐标为(2,3)故选A【点睛】本题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键10、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形进行判断即可【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;轴对称图形有2个,故选B【点睛】本题主要考查了轴对称图形,解题的关键在于能够熟练掌握轴对称图形的定义二、填空题1、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形而三角形不一定是轴对称图形故答案为:4【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、【分析】如图,先求解再利用轴对称的含义求解 再利用平行线的性质可得答案.【详解】解:如图, ,则 由对折可得: 长方形, 故答案为:【点睛】本题考查的是长方形的性质,邻补角的定义,轴对称的含义,平行线的性质,掌握以上知识是解题的关键.3、9cm【分析】根据翻折的性质可知CDDE,BCBE,于是可以得到ADDE的长和AE的长,从而可以得到ADE的周长【详解】解:由题意可得,BCBE,CDDE,AB8cm,BC5cm,AC6cm,ADDEADCDAC6cm,AEABBEABBC853cm,ADDEAE9cm,即AED的周长为9cm,故选:C【点睛】本题考查翻折变换和三角形的周长,解答本题的关键是利用等量代换的思想,求三角形的周长4、90° 8 【分析】连接OP,过点O作OHNM交NM的延长线于H首先利用三角形的面积公式求出OH,再证明OP1P2是等腰直角三角形,OP最小时,OP1P2的面积最小【详解】解:连接OP,过点O作OHNM交NM的延长线于HSOMN= MNOH=14,MN=7,OH=4,点P关于OA对称的点为P1,点P关于OB对称点为P2,AOP=AOP1,POB=P2OB,OP=OP1=OP2AOB=45°,P1OP2=2(POA+POB)=90°,OP1P2是等腰直角三角形,OP=OP1最小时,OP1P2的面积最小,根据垂线段最短可知,OP的最小值为4,OP1P2的面积的最小值=×4×4=8,故答案为90°;8【点睛】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明OP1P2是等腰直角三角形,属于中考常考题型5、90【分析】根据折叠的性质和平角的定义即可得到结论【详解】解:由折叠可知,ABE=A'BE=ABA,CBD=C'BD=CBC,DBE=A'BE+C'BD=ABA+CBC=(ABA'+CBC')=×180°=90°故答案为:90【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)根据轴对称的性质分别作出点A,B,C的对应点即可;(2)连接,则与轴的交点即为所求;(3)运用分割法即矩形的面积减去周围三个小三角形的面积即为所求【详解】(1)如图,即所求(2)如图,点P即所求(3).【点睛】本题考查了轴对称作图,能够准确作出对称图形是解此题的关键2、见解析【分析】根据等腰三角形的性质得到B=C,运用AAS证明DEBDFC即可【详解】ABAC,D是BC的中点,B=C,DB=DC,DEAB,DFAC,BED=CFD=90°,DEBDFC(AAS),DE=DF【点睛】本题考查了等腰三角形的性质,三角形的全等判定和性质,熟练掌握全等三角形的判定定理和性质是解题的关键3、图见解析【分析】根据轴对称图形的性质画出图形即可【详解】解:方案如图所示,对称轴如图所示【点睛】本题考查利用轴对称设计图案,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、(1)见解析;(2)见解析,点P坐标为(3,0)【分析】(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接可得;(2)作点A关于x轴的对称点,再连接交x轴于点P【详解】(1)如图所示,即为所求;(2)如图所示,作点A关于x轴的对称点,再连接交x轴于点P,其点P坐标为(3,0)【点睛】本题主要考查作图轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题5、图见解析【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)即可得【详解】解:根据轴对称图形的定义,画图如下(右边的实线部分):【点睛】本题考查了画轴对称图形,熟记定义是解题关键